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In this paper, we propose using a mixed genetic-floyd-warshall algorithm in combination with a Floyd-warshall 

algorithm to model the satisficing behaviour of consumers across spatially differentiated stores. Consumer agents 

can pick a basket of goods from different stores to either maximize their utility or to “satisfice” by selecting the 

first basket with a utility that is higher than their satisfaction threshold. The Floyd-warshall algorithm is used to 

find the shortest path between two chosen stores by considering travel cost. Factors such as price, quality of goods, 

the cost of travel to the store, consumers' decision-making preferences, and store locations play significant roles 

in the decision-making process of consumer agents. The model is tested based on mechanisms at the individual 

level to show how the model works and at the macro-level to reproduce foundational theories in economics. 
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1. Introduction 

Companies seek information on consumer behaviour so that they can tailor their marketing 

strategies to maximize sales (Bernabé-Moreno et al., 2015). Consumer choice involves at least 

six different stages, including need recognition, search for information, evaluation of 

alternatives, decision to purchase, purchase, and post-purchase learning. Within these stages, 

there are underlying cognitive processes that determine why consumers buy things. 

Psychological factors can affect consumers’ purchasing rules and may lead the consumer to buy 

goods with near optimum utility rather than maximum utility. In this paper, we compare two of 

the most important purchasing rules: satisficing and maximizing. In satisfying behavior, 

consumers tend to buy any basket of goods with utility higher than their satisfaction threshold, 

considering their budget constraint (Schwartz et al., 2002). On the other hand, maximizing 

consumers select the basket of goods with the highest possible utility within their budget. 

Therefore, satisficers may buy goods more for convenience and enjoyment but consequently 

pay more (Schwartz et al., 2002). This is a form of bounded rationality (Simon, 1955; Schwartz, 

2008).  

There are many efforts to model consumer behavior. However, to the best of our knowledge, 

there is no agent-based model in which consumer agents choose their goods from spatially 

differentiated stores to maximize their utility or reach their satisfaction threshold. Selecting a 

basket of goods to maximize utility from different stores is a subset of the unbounded knapsack 

problem and  is an NP-hard problem that has yet to be solved (Neapolitan and Naimipour, 

2004). The NP-hard problem can be solved with pseudo-polynomial time complexity 

(Neapolitan and Naimipour, 2004).  

To clarify the problem related to a multi-market situation, we use an example. Assume that 

in the bidirectional graph (Figure 1), nodes (rectangles) stand for stores and edges for the cost 

of moving from one node to another (including distance, gas, etc.). The first node (circle) 

indicates the consumer's location. In this situation, maximizers have the NP-hard problem of 

determining which stores they should select in order to maximize their net benefit from a 

purchase while minimizing search and travel costs. Satisficers do not seek to maximize, and so 

should have an easier time finding a satisfactory basket of goods, but even this is difficult a 

priori.  

We solve both problems by breaking down the decision into two interrelated processes. We 

first use a Floyd-warshall algorithm as part of genetic algorithm to find the shortest (least 

expensive) path for each basket of goods and then incorporate this as part of the total utility for 

https://doi.org/10.22067/jstinp.2024.83302.1064
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each basket of goods. We then incorporate this into a genetic algorithm that finds the 

satisfactory combination of path and purchase options for the entire system. This is similar to 

the way in which people learn the attributes of a spatial context and then use that information 

to plan their shopping trips based on what they need at any given point in time (Dellaert et al., 

1998).  

 
Figure 1. Example of market structure-problem definition 

We use agent-based modeling (ABM) to implement this algorithm. ABM is an analytical 

technique for modeling complex systems (Gilbert, 2008). Agents are autonomous entities with 

an internal decision-making process. Taking human cognitive factors into account is important 

to make humans like agents, and ABMs are often used to explore the macro-level outcomes of 

individual-level decision processes (Fujita, Hakura and Kurematu, 2009). Most early ABMs 

had no real spatial component, as the focus was on developing more and more sophisticated 

decision processes. For instance, in their seminal paper, Jager and Janssen (1999) propose a 

consumer decision-process in which consumer agents are equipped with four cognitive 

processes: deliberation, imitation, social comparison, and repetition. Although the paper 

proposes a model of the agent’s decision process, it mostly focuses on the internal part of the 

agent’s mind rather than the environment. Goods are abstractly generated without physical 

location, and stores and agents choose from a single good category rather than a basket of goods. 

This simplification was useful for initial model runs but could be extended by incorporating 

spatial attributes into the environment and the decision process (Wang et al., 2021).  

Zhang and Zhang (2007) created a model in which consumer agents choose a suitable good 

when encountering competing brands in a market with only a few stores. This allows them to 

evaluate the decoy effect, in which consumers change their preference for ordering two goods 

due to the presence of a third good that is asymmetrically dominant (inferior in all but one 

attribute). Agents make decisions based on a motivation function and are equipped with 

https://doi.org/10.22067/jstinp.2024.83302.1064


 

 

 

 

       Roozmand et al., JSTINP 2024; Vol. 3. No. 2                                                    DOI: 10.22067/JSTINP.2024.83302.1064 39 

JOURNAL OF SYSTEMS THINKING IN PRACTICE                                          RESEARCH ARTICLE 

personality traits, but the model is not able to find the best basket of goods among all available 

stores. Also, there are no transportation costs in this model, so maximizing occurs only over the 

attributes of the goods sold, not the spatial location of the stores (Zhang and Zhang, 2007).  

Roozmand et al. (2011) propose a model based on culture and personality for consumer 

agents’ decision-making processes. The core of the model is human needs, where agents are 

motivated based on those needs which are important in their culture (Roozmand et al., 2011). 

It models the power distance dimension of Hofstede’s model of national culture, social status 

and social responsibility needs, and the extroversion, agreeableness and openness of McCrae 

and Costa’s five-factor model (McCrae and Costa, 1983, 1996, 2003; Hofstede and Hofstede, 

2005; Hofstedeet al., 2010). The model is validated in eleven European countries, even though 

the results do not fit two other countries, Great Britain and the Netherlands. All in all, there is 

great detail regarding consumer decision processes in the model, but it does not consider the 

location of stores. Also, the consumer agent buys one good at a time and is not able to choose 

a basket of goods.   

ABMs have also been used to explore the role of trust in market transactions. Roozmand et 

al. (2007) describes a market model including buyer and seller agents. Buyer agents apply 

reinforcement learning to model reputable sellers and seller agents use reinforcement learning 

to model reputable buyers. Similarly, Khosravifar et al. (2012) propose a trust model for 

computing agents which is evaluated with service consumer agents based on different trust 

models.  

All of the above decision processes are more difficult when consumer agents maximize over 

a basket of goods rather than one good or a few different brands. Baptista et al. (2014) describe 

a greedy algorithm to solve the problem of finding the maximized basket of goods. The 

proposed algorithm does not always provide an optimal solution; however, it has linear 

complexity. Roozmand and Webster (2014) use a dynamic algorithm to find the best basket of 

goods, namely a basket of goods with the highest possible utility. They also used a genetic 

algorithm to find the satisficing basket of goods. Consumer multichannel choice behavior has 

been studied in the research conducted by Sonderegger (Sonderegger-Wakolbinger and 

Stummer, 2015). Heterogeneity of customers, social dynamics, and different purchasing stages 

have been taken into account in this research (Sonderegger-Wakolbinger and Stummer, 2015). 

Here again, although these models are built on sophisticated cognitive models, they do not 

include the spatial component.  

https://doi.org/10.22067/jstinp.2024.83302.1064
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The incorporation of spatial elements began in parallel with some of the most advanced 

decision-processes described above. Here, we review a few of these spatially explicit models 

of consumer decision-making, along with spatial economic agent-based models. Tsekeris and 

Vogiatzoglou (2011) propose a model based on new economic geography that simulates the 

complex interactions of household and firm location choices based on agent-based modeling. It 

considers transport costs as part of agents’ decision-making processes in a system of cities. The 

model contains households, the production sector, firms, and central and local government 

agents. Household agents, as end consumers, use a utility function to choose a basket of goods 

that is affordable given their budget constraints. However, the model is not able to find the best 

basket of goods.  

Also, He et al. (2014) propose an agent-based spatial model including four types of agents: 

the world, manufacturers, firms and consumers. In this paper, firms utilize a genetic algorithm 

to evaluate their location and pricing strategies. Therefore, the position of firms evolves over 

time to find the optimal location. The manufacturer agent provides an infinite quantity of goods 

for consumer agents. The world agent contains all other agents and is used to update the values 

of all the variables, such as price, position and other endogenous parameters, as well as provide 

results for later analysis. Consumer agents use a utility function to find a suitable basket of 

goods considering their budget constraints. The utility function contains the price of goods from 

each firm and the distance to that firm. Consumer agents’ positions are fixed. The main problem 

of such consumer agent algorithm is that it does not find the optimal product basket. Consumer 

agents always choose one firm to purchase all of the goods that they need. However, the best 

basket of goods might be found in different stores, and so the consumer may improve utility by 

going to different stores as long as travel costs are relatively low (He et al., 2014). 

According to the reviewed research, optimizing baskets of goods has not been studied in a 

spatially differentiated stores where stores are located at different geographical locations. In 

this case, not only the utility and price of each good should be considered, but also the time and 

cost of traveling from one store to another. In this paper, we apply a mixed genetic-floyd-

warshall algorithm (Chen and Jian, 2007). The paper is organized as follows: Section 2 

describes the proposed algorithm. In subsection 2-1, we use an example to show how the 

algorithm works. Section 3 provides the results, including verification to show the model works 

properly (subsection 3-1) and validation based economics theories (subsection 3-2). Finally, in 

section 4 we conclude the paper and propose future works. 

https://doi.org/10.22067/jstinp.2024.83302.1064
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2. Proposed algorithm 

As explained in the introduction, maximizing consumer choice across a range of stores is a 

complex decision process and an NP-hard problem. There are a few techniques that could be 

used to search the problem space to find the best or satisficing basket of goods, such as brute-

force which needs to search the whole solution space, dynamic programming, or local search 

algorithms. This problem is similar to the unbounded knapsack problem (Chen and Jian, 2007; 

Srisuwanna and Charnsethi, 2007) where consumer agents can choose one or more goods from 

different types as far as the price does not exceed the consumer’s budget; therefore, dynamic 

programming is a solution. However, in knapsack problem, dynamic programming is still time-

consuming and, moreover is usually used for maximizing utility (Neapolitan and Naimipour, 

2004) rather than satisficing problems. Therefore, we apply dynamic programming for 

minimizing the path among stores and genetic algorithms to find the satisficing basket of goods 

(Roozmand and Webster, 2014). However, the proposed dynamic programming model by 

(Roozmand and Webster, 2014) must be modified to accommodate multiple stores with 

different spatial locations (and therefore transport costs).  

This spatially-explicit genetic algorithm should take two features into account: the net utility 

from various items and the shortest path regarding transport costs. We use the Floyd-Warshall 

algorithm (Neapolitan and Naimipour, 2004) to find the shortest path between any two nodes 

in a weighted graph, which is explained in details later. That is then included in the total utility 

for each basket of goods, which allows us to efficiently use a genetic algorithm to find the 

satisfactory combination of goods and stores at each decision point. 

Assume that we have n number of stores. The following vector shows the stores in Equation 

1: 

𝑆𝑡𝑜𝑟𝑒𝑠 = < 𝑆1, 𝑆2, … , 𝑆𝑛 > (1) 

In which 𝑆𝑖 indicates store i. Each store contains items as shown in Equation 2: 

𝑆𝑖 = {𝑆𝑖_𝑖𝑡𝑒𝑚1, 𝑆𝑖_𝑖𝑡𝑒𝑚2, … , 𝑆𝑖_𝑖𝑡𝑒𝑚𝑘𝑖
}   (2) 

Which 𝑆𝑖_𝑖𝑡𝑒𝑚𝑗 shows the jth item in store i and ki is the maximum number of items in store 

i. Each product has a specific quality and price (Equation 3): 

𝑖𝑡𝑒𝑚𝑖𝑗 =< 𝑞𝑖𝑗 , 𝑝𝑖𝑗 > (3) 

Where 𝑞𝑖𝑗and 𝑝𝑖𝑗show the quality and price of item j of store i, respectively. 

Stores are connected to each other by roads. We assume the roads between stores are 

https://doi.org/10.22067/jstinp.2024.83302.1064
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bidirectional and both directions can have different weights and thus are not symmetrical. The 

adjacency matrix represents how stores are connected to each other. This matrix is used to 

calculate the shortest path by the use of Floyd-Warshall algorithm to move from one store to 

another (one node to another). Figure 2 shows the matrix.  

 
Figure 2. The matrix is used for finding shortest path by the use of Floyd-warshall algorithm  

Where numbers 1 to n are used as identifiers for each store (or node), and weight 𝑤𝑖𝑗shows 

the cost for moving from store i to store j. The cost is the sum of all costs including distance, 

gas, time, etc which for the sake of simplicity we use a simple value 𝑤𝑖𝑗. 

As we mentioned before we use a genetic algorithm. The key element in genetic algorithm is 

choosing the structure of the chromosome. The chromosome in our model is defined as follows: 

CH = {<𝑖𝑡𝑒𝑚11, 𝑖𝑡𝑒𝑚12, … , 𝑖𝑡𝑒𝑚1𝑘1
>, <𝑖𝑡𝑒𝑚21, 𝑖𝑡𝑒𝑚22, … , 𝑖𝑡𝑒𝑚2𝑘2

>, … , 

<𝑖𝑡𝑒𝑚𝑛1, 𝑖𝑡𝑒𝑚𝑛2, … , 𝑖𝑡𝑒𝑚𝑛𝑘𝑛
>,<𝑠𝑒𝑙1, 𝑠𝑒𝑙2,…, 𝑠𝑒𝑙𝑛>} 

(4) 

In which, 𝑖𝑡𝑒𝑚𝑖𝑗 indicates the item j from store i. 𝐾𝑖is a constant value and shows the 

maximum number of items in the store i. Therefore, the first set includes the items of store 1, 

the second set contains items of store 2, and so on. The last part of chromosome 

<𝑠𝑒𝑙1, 𝑠𝑒𝑙2,…, 𝑠𝑒𝑙𝑛> shows the selected stores. Having stores in the chromosome allows the 

agent to calculate the costs of travel as part of total cost of each chromosome. 𝑠𝑒𝑙𝑖 is a binary 

variable. If 𝑠𝑒𝑙𝑖 is 0, it means that consumer does not choose the store i and does not buy 

anything from that store, and if 1, it means that consumer buys at least one item from store i. 

The total benefits of the chromosome is calculated as follows: 

𝑇𝑜𝑡𝑎𝑙𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = ∑ ∑ 𝑛𝑖𝑗 ∗ 𝑞𝑖𝑗

𝑘𝑖

𝑗=1

𝑛

𝑖=1

 (5) 

Where i counts the stores, and j the items in that store. Therefore, 𝑛𝑖𝑗 indicates the number 

of item j selected from store i, and 𝑞𝑖𝑗 is the quality of the item. Also, the total cost of the 

chromosome is calculated as the sum of all prices of items as well as moving costs between 

chosen stores: 

https://doi.org/10.22067/jstinp.2024.83302.1064
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𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 = [∑ ∑ 𝑛𝑖𝑗 ∗ 𝑝𝑖𝑗

𝑘𝑖

𝑗=1

𝑛

𝑖=1

] + 𝑀𝐶 (6) 

MC stands for minimum cost of travel and is the shortest path among all chosen stores. There 

might be many routes to travel through the selected stores, however, consumer agents in this 

model optimize their travel cost by selecting the shortest path among the stores from which they 

choose to buy goods.  Thus, for any suite of stores that a consumer would choose to visit, the 

Floyd-warshall algorithm can be used to find the shortest path. The genetic algorithm then sorts 

chromosomes based on the total benefit minus the total cost, which includes the minimum travel 

costs. It is this convention that makes the solution tractable.  

Although it may seem overly simple at first, anecdotally, most people do most of their 

shopping within an area that they know well and have a high degree of knowledge about the 

travel costs of different routes between stores. Even people who move to a new area will identify 

the quickest routes after some period of learning. It is possible that this learning process would 

be path dependent—that is, consumers may not explore all routes, particularly if they are 

satisficing and therefore their set of routes may depend on where they searched first. However, 

that is a question for a subsequent model that would combine some form of learning algorithm 

over the best routes with the genetic algorithm described here. Before adding this additional 

level of complexity, we solve the problem of deciding on both the basket of goods and the travel 

costs using the minimum travel cost as calculated by the Floyd-warshall algorithm. The utility 

of the chromosome is calculated as follows: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑇𝑜𝑡𝑎𝑙𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 − 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 (7) 

We also apply the consumer needs as another influential factor on the consumer decision 

process. There are three possibilities 1) a consumer needs an exact number of each item (as 

when following a recipe), 2) a consumer needs a minimum number of each item (as when 

buying dry goods or other consumables with a long shelf-life), and 3) a consumer needs a 

maximum number of each item (as when buying goods that have a short shelf-life). Therefore, 

we have three vectors according to the strategy that we are going to choose: 

𝑁𝑒𝑒𝑑𝑒𝑥𝑎𝑐𝑡 =< 𝑒11,𝑒12, … , 𝑒1𝑘1, … , 𝑒𝑖1,𝑒𝑖2, … , 𝑒𝑖𝑘𝑖, … , 𝑒𝑛1,𝑒𝑛2, … , 𝑒𝑛𝑘𝑛 > 
(8) 

In which 𝑒𝑖𝑘𝑖 shows the exact number of items 𝑘𝑖 from store i that a consumer needs. 

Similarly, we define the minimum and maximum needs on each item as follows: 

https://doi.org/10.22067/jstinp.2024.83302.1064
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𝑁𝑒𝑒𝑑𝑚𝑖𝑛 =< 𝑚11,𝑚12, … , 𝑚1𝑘1, … , 𝑚𝑖1,𝑚𝑖2, … , 𝑚𝑖𝑘𝑖, … , 𝑚𝑛1,𝑚𝑛2, … , 𝑚𝑛𝑘𝑛 > (9) 

 

𝑁𝑒𝑒𝑑𝑚𝑎𝑥 =< 𝑚𝑎11,𝑚𝑎12, … , 𝑚𝑎1𝑘1, … , 𝑚𝑎𝑖1,𝑚𝑎𝑖2, … , 𝑚𝑎𝑖𝑘𝑖, … , 𝑚𝑎𝑛1,𝑚𝑎𝑛2, … , 𝑚𝑎𝑛𝑘𝑛 > (10) 

Therefore, for strategy 1, we use the exact needs vector, for the 2nd strategy we use minimum 

needs vector and strategy 3 uses maximum needs vector. These vectors control the value for 

each item in the chromosome.  

The key functions of the genetic algorithm are crossover and mutation The main idea of 

proposed genetic algorithm comes from (Roozmand and Webster, 2014). To do the crossover, 

all chromosomes are sorted based on their utilities and are paired as parents. The crossover 

operation is applied on each store of paired chromosomes separately. Assuming that there are 

k1 items in store 1, the crossover point, which is a randomly chosen value between 1 and k1-1, 

is selected. Then the selected items of store 1 of two parent chromosomes are substituted based 

on the crossover point. This operation is applied for all other stores of these two chromosomes 

and finally two new chromosomes are generated. The crossover function is applied on all other 

paired chromosomes. 

The mutation function is applied on all chromosomes with probability p including parents 

and offspring. The mechanism for choosing mutation point is like a crossover point and is 

selected separately for each store. Assuming that the mutation point refers to itemij and the 

number of itemij at the selected point is vij. The changes of the itemij at the selected point is 

randomly chosen in the ranges [0, vij] for reducing the number of itemij and [0, Avaibale_Budget 

/ pij] for increasing the number of itemij.The equation Avaibale_Budget / pij guarantees that the 

cost of item does not exceed the budget. A random binary variable is used to decide to reduce 

or increase the number of items in mutation function. 

After applying the crossover and mutation functions on chromosomes, the chromosomes with 

highest utility are selected and substituted with initial population. This process is repeated until 

a satisficing chromosome is found or the agent reaches the limitation for the total number of 

iterations.  

2.1. Example 

Let’s consider an example. Assume that we have 3 stores with the following items that are 

connected to each other as shown in Figure 3. As in our first example, the large dot represents 

the agent’s start-point.  

https://doi.org/10.22067/jstinp.2024.83302.1064
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𝑆1 = {𝑖11, 𝑖12, 𝑖13} 𝑆2 = {𝑖21, 𝑖22} 𝑆3 = {𝑖31, 𝑖32} 

 

 
 Figure 3. Market example for showing how the algorithm works 

Lines with arrows represent one-way routes. Lines with two arrows show bidirectional route. 

The quality and price of items are as follows: 

Table 1. Items used in three stores 

Stores Items Quality Price 

𝑺𝟏 𝑖11 10 5 

𝑖12 20 15 

𝑖13 30 25 

𝑺𝟐 𝑖21 15 15 

𝑖22 30 20 

𝑺𝟑 𝑖31 30 25 

𝑖32 50 40 

First, let’s consider what would happen without travel costs. Assume that we have the 

following chromosome CH: 

Table 2. Structure of a chromosome 

CH 1 2 3 4 5 6 7  8 9 10 

Items i11 i12 i13 i21 i22 i31 i32 Store 

name 

S1 S2 S3 

Number of item ij 5 2 4 0 0 7 1  1 0 1 

 Store 1 Store 2 Store 3  Selected Stores 

This chromosome shows that, in this basket of goods there are 5 of item1, 2 of item2, and 4 

of item3 from store 1, there are no items from store 2, and there are 7 of item1 and one of item2 

from store 3. The last three cells show which stores would be visited if the agent selects this 

basket. Number 1 below the name of a store in selected store section indicates that store would 

be selected and 0 the store would not be selected. Here, stores 1 and 3 would be selected. Total 

benefits without travel costs for this chromosome is calculated as follows: 
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Total Benefits = [5*10+2*20+4*30] + [0*15+0*30] + [7*30+1*50] = 470 (11) 

To calculate the cost of this chromosome we need to add the distance cost to the cost of items. 

In this example, only stores 1 and 3 would be chosen. Therefore, there are three possible routes 

for the consumer. The first route is to move to store 1, then go to store 3 and lastly return to the 

starting location (note that this method could also accommodate an end point that is different 

from the starting location). Considering the place 0 (zero) for the consumer agent, it needs to 

follow the route [0, 1, 3, 0] to buy the items contained in the chromosome. Alternatively, the 

consumer can choose the route [0, 3, 1, 0]. Each of the above routes have different costs. In this 

example, the agent cannot move from location 1 to 3 directly (or vice versa), but rather must 

pass through location 2 or location 0. Therefore, we use Floyd-Warshall (Neapolitan and 

Naimipour, 2004) algorithm to find the shortest path between any two nodes in this weighted 

graph. This then gives us the value of MC for this specific chromosome. 

In this example, we have two paths as follows:  

𝑀𝐶1 = 𝐹𝑙𝑜𝑦𝑑[0,1]+Floyd[1,3]+Floyd[3,0] = 10+15+5 = 30 (12) 

Floyd [0,1] shows the shortest path from consumer location to store 1. There are three ways 

to get there including routes [0,1], [0,2,1] and [0,3,2,1]. The first route costs 20, the second 10, 

and the third route 15. Therefore, Floyd algorithm chooses the second route as the shortest path 

from the consumer location to store 1. Although, consumer passes store 2 to get store 1, it does 

not buy anything from store 2. The route [0, 3, 1, 0] is another possibility. Therefore, we have: 

𝑀𝐶2 = 𝐹𝑙𝑜𝑦𝑑[0,3]+Floyd[3,1]+Floyd[1,0]=5+10+10 = 25 (13) 

Finally the MC is calculated as the minimum of MC1 and MC2, min(30, 25) = 25. MC should 

be added to the total price as part of cost of purchasing this basket of goods. In this example the 

cost is calculated as follows: 

Total Cost = [[5*5+2*15+4*25] + [0*15+0*20] + [7*25+1*40]]  +  [MC=25] = 395 (14) 

Therefore, the total cost is 395 for this chromosome. If the Cost≤budget then this 

chromosome is feasible and acceptable by consumer. It means that consumer can afford this 

basket of items, including costs of travel among the stores. 

We can then calculate the total utility of the chromosome by subtracting the costs from the 

benefits:  
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Utility = 470-395 = 75 (15) 

This is the value that is assessed by the genetic algorithm as it searches for the best possible 

combination of goods from all three stores, given travel costs. 

3. Results 

This section is divided into two subsections. In the subsection 3-1 we use four scenarios to show 

how the model works, and in subsection 3-2 we utilize the utility and indifference curve based 

on budget constraint to test the model based on theories in economics. 

3.1. Working mechanism 

The first scenario is used to test the genetic algorithm to find the optimal or satisfactory basket 

of goods when all items have the same quality and price, but are located in different stores. 

Figure 4  shows how the stores are connected to each other. 

 
 Figure 4. Market situation for scenario 1 

As seen in Figure 4, all items in three stores have the same quality and price. The only 

difference is the distance between the consumer and the store. In fact, Figure 4 indicates that 

the best store for the consumer is store 1 (S1) which is the closest store to him/her. The 

consumer’s budget is set to 3000 and the algorithm starts with 200 initial chromosomes and 

runs for 1000 times (Our experience shows that 1000 runs is a good number for finding optimum 

or near-optimum solution). We’ve provided the results based on three factors: fitness (utility) 

improvement, store selection, and route selection.  

Figure 5 shows how the fitness or utility of chromosomes are improved to get the near-

optimal solutions within a reasonable amount of time.  
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 Figure 5. Fitness improvement with the increase of genetic algorithm runs 

As we can see in above figure, the fitness of the selected chromosomes generally improves 

as the algorithm progresses. Each point shows the value of the best chromosomes’ fitness. The 

fitness value is constant for many stages of algorithm’s runs. This is because the algorithm does 

not produce a better solution on those runs. The best fitness value at run 1 is 1600 which belongs 

to a chromosome in the initial population. Finally, the algorithm ends with a fitness (Utility) of 

2600 for the best chromosome, which according to this case, is the highest possible fitness. The 

algorithm finds the near-optimal solutions after 106 runs. Figure 6 shows how many items are 

selected from different stores on each run.  

 
 Figure 6. Item selection with the increase of genetic algorithm runs 

Items are selected randomly from all three stores in the beginning. According to the effect of 

crossover and mutation operations on chromosomes, we see the increase in the selection of item 

A from store 1 (S1) which is 280 and consequently 2600 (280*20 – 280*10-200) fitness or 

utility (see figure 5) and 2800 for the cost of items. There is no item selection from stores 2 and 

3. Considering the movement cost for the consumer, 100 for going to the store 1 and 100 for 

going back, we have 200 for the travel cost. At run 44, the consumer agent has 330 units of 
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budget unused. Finally, the algorithm selects 29 more units of item A from store 1 at run 77 and 

more 4 items at run 106. The more allow the algorithm to run, the more it turns from a satisficer 

strategy to a maximizer strategy. At this run, 280 items of good A have been selected and the 

result is 2600 for the utility and 3000 for the costs (2800 for the cost of items and 200 for the 

travel cost). The consumer agent has spent all of his/her available budget and reached the 

highest possible utility.  

We should note here that the consumer appears to receive negative utility from the transaction 

because we assume price and utility are equal, ignoring the well-known concept of consumer 

surplus in economics. Consumer surplus refers to the utility that consumer receives above the 

amount paid for the good or service. In any market, there will be people who are willing and 

able to pay more than the equilibrium price. The difference between what they are willing to 

and able to pay what they actually pay is the consumer surplus (Turnovsky, Shalit and Schmitz, 

1980). However, it does simplify the explanation somewhat and has no significant implications 

for the functioning of the model itself. In other words, the model would work just as well with 

consumer surplus included, it would just make it a bit more difficult to explain how the system 

operates. 

We also examined the best chromosomes at runs in which there is a change in the fitness of 

the best chromosome (1, 2, 44, 77, and 106). Table 3 tracks the routes selected at each of these 

runs as well as the fitness, item costs, and route cost.  

Table 3. Traveled stores, fitness, items’ costs, and route cost 

Run Route 
S1’s 

items 

S2’s 

items 

S3’s 

items 
Fitness Items’ cost 

Route 

cost 

1 0-S1-S2-S3-0 108 78 44 1600 2300 700 

2 0-S1-S2-S3-0 39 87 104 1600 2300 700 

44 0-S1-0 247 0 0 2270 2470 200 

77 0-S1-0 276 0 0 2560 2760 200 

106 0-S1-0 280 0 0 2600 2800 200 

We also would like to see the behavior of the algorithm when high quality items are located 

at a further store. To do this, we changed the quality of item C in store 3. In other words, we 

substituted item C’s attributes from <price = 10, quality = 20> to <price = 10, quality = 100>. 

The final result of the algorithm is shown in the table 4. It shows that our proposed genetic 

algorithm leads to store 3 for selecting item C, as it has the highest quality.  

Table 4. Maximizing the basket of items by choosing only store 3 

Route S1’s items S2’s items S3’s items Fitness Items’ cost 
Route 

cost 

0-S3-0 0 0 240 21000 2400 600 
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Although store 3 is the furthest store from consumer location, it has the highest quality item 

(item C), so the consumer agent prefers to buy his/her items from this store in order to 

maximize its utility (fitness = 8400). In other words, the cost of traveling to the most distant 

store is outweighed by the improved utility from access to a higher quality item.  

Scenario 3: In this scenario we altered scenario 1 by adding two more items to each store with 

the quality 100 and price 10. If this was the only change, the outcome would not be different. 

However, we also changed the consumer agent’s needs. In scenario 1, there was no limitation 

on the number of items selected by the consumer agent, so it was able to maximize its utility 

based on any combination of items. In this scenario, we assume that consumer agent looks for 

specific amounts of item A and B and has no limitation on item C.  

Needs = < A = 55, B=38, C = -1> 

The above vector indicates that consumer agent needs 55 units of items A, 38 units of items 

B, and there is no limitation on item C. Therefore, the consumer agent should exactly buy 55 

and 38 items of A and B respectively. The following graph shows that all items A, B, and C 

are available in all three stores with the same quality and price. Therefore, what matters in this 

scenario are the distance to each store and the consumer’s needs.  

 
 Figure 7. Market structure for scenario 3 

The following Figure 8 shows how costs for route and items change over time as the 

algorithm progresses.  
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 Figure 8. Items cost vs. route cost 

As we see in Figure 8, the route cost decreases at the points where the algorithm finds a 

chromosome with higher fitness. As we described earlier, the chromosome chosen at each run 

is the best chromosome at that run. There might be some other chromosomes with high fitness 

that simply are ignored since a chromosome with better fitness exists. The following figure 

confirms improvement in chromosomes’ fitness. 

 
 Figure 9. Fitness improvement with the increase of genetic algorithm runs 

We see two improvements in the chromosomes. In this scenario, at run 169 the near-optimal 

solutions is found. This is 63 (169-106) runs longer than it took to find the best chromosome in 

scenario 1, which makes sense given the changes in scenario 3. In the first scenario, 

chromosomes can take any number of items, however, in this scenario many chromosomes are 
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disqualified as they produce more than the limitations for items A and B. This consequently 

reduces the chance for higher fitness chromosomes. At the same time, the total number of 

chromosomes has increased substantially because now each store can have any combination of 

the three items instead of just one item. As shown in Figure 10, the result is that the agent 

quickly learns to purchase large amounts of C from Store 1, while fulfilling its more restricted 

needs for A and B from different stores, gradually learning which combination of stores 

provides the highest utility given travel costs.  

 
 Figure 10. Items selection with the increase of genetic algorithm runs 

Also, table 5 shows how the route is modified at each run where there is a change in 

chromosome fitness. The algorithm exactly chooses 55 units of item A, 38 units of item B, and 

167 units of C from store 2 which is the closest store to the consumer. The reason for choosing 

store 1 and 3 is that all prices and qualities of all goods are the same in all stores. Therefore, it 

is quite reasonable to choose store 1 for purchasing all items as it is the closest one. Thus, this 

test scenario shows that algorithm is also able to consider the consumers’ limitations for specific 

number of items. 

Table 5. Results for when consumers have limitations on exact number of items 
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Scenario 4: In this scenario we would like to test strategies 3 and 4. Therefore, we added 

item D = <price = 10, quality = 150> to store 3 in the above scenario. Also, we define the 

consumer needs for both strategies as follows: 

Strategy 3: Needsmin = <A = -1, B = -1, C= -1, Dmin = 3> 

Strategy 4: Needsmax = <A = -1, B = -1, C= -1, Dmax = 3> 

These two needs vectors indicate that there is no limitation on items A, B, and C. However, 

in strategy 3 the consumer needs at least 3 units of item D. It may choose to buy more than 3 

units of item D but cannot choose to by fewer. Based on this strategy, the algorithm finds the 

following combination of items.  

Table 6.Results for when consumers have limitations on minimum number of items 

Although it is furthest from the consumer’s start location (cost = 600), the consumer must 

visit store 3 since it is the only store which sells item D. It will also buy all other items from 

that store since there is no difference in the quality and price of A, B, and C in any of the stores. 

The genetic algorithm has chosen 240 units of item D. There is no contradiction with the 

problem definition since consumer has bought at least 3 units. In this execution of the algorithm, 

it has selected 0 of A, 0 of B, 0 of C, and 240 of D, but it could have selected any other 

combination of items with D >=3 and still achieved optimum fitness.  

We see a different behavior of our genetic algorithm in the maximum strategy (#4). The 

consumer does not have purchase any of item D so it also does not have to pay the high travel 

cost to visit store 3. If consumer happens to buy item D, it cannot buy more than 3 units but 

given the location of the item, it is not likely that the algorithm will select a chromosome that 

contains item D. Table 7 shows the result with this strategy: 

Table 7. Results for when consumers have limitations on maximum number of items 

As expected, the consumer only visits store 1 and buys only items A, B, and C. As we 

compare results in table 7 and table6, consumer gains 8000 units of utility which is more than 

the 25000 units that result from strategy 3.  

Route 
Store 1 Store 2 Store 3 

Fitness 
Items 

cost 

Route 

cost A B C A B C A B C D 

0-S3-0 0 0 0 0 0 0 0 0 0 240 33000 2400 600 

Route 
Store 1 Store 2 Store 3 

Fitness 
Items 

cost 

Route 

cost A B C A B C A B C D 

0-S1-0 177 18 85 0 0 0 0 0 0 0 25000 2800 200 
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3.2. Aggregated results for utility and indifference curves 

Since it is hard to validate the model based on real data, we instead rely on well-established 

economic theories. In the next two scenarios, we show how our model produces believable 

utility and indifference curves based on budget constraint for a set of consumers (100 agents). 

This includes examining differences in model behavior depending on whether or not we assume 

agents are maximizing or satisficing.   

Before moving on to this analysis, we transition to a generalized version of the model used 

in the examples above. For this, we use a simple complete graph including four nodes: consumer 

location, store 1, store 2, and store 3. It is possible to use more complicated graphs but a simpler 

set up makes it easier to interpret the behavior of the agents and the model.  

Figure 11 shows the stores with different distances. All nodes are connected to each other 

with edges d1 to d6 as shown in this figure. Each node indicates a store, and each edge shows 

the distance between two stores. This generalized model will also allow us to complete 

sensitivity analysis as described in later sections.  

 
 Figure 11. Market structure for validation 

3.2.1. Utility  

In this section, we test the effects of income (budget constraint), item quality, and price on 

aggregate utility. First, we consider the effects of price changes and budget constraints, holding 

item quality and distances constant. Our base values for item attributes and distances can be 

view in Table 8. We start with a skewed quality structure similar to scenario 2 above, where 

one store has an item of very high quality but low price and the other two stores have two lower-

quality items at the same price. Note that the travel costs in this model are lower, reflecting 

relative proximity to stores (e.g., living in an urban or suburban environment) and allowing us 

to focus more on other factors in the decision process.  
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Table 8. Results for when one item’s utility dominates other items and there is no substitution 

Stores Quality Price 
Distances 

d1 d2 d3 d4 d5 d6 

Store1 (Good1) 100 10 

5 10 15 10 5 5 Store2 (Good2) 40 10 

Store3 (Good3) 40 10 

We generate 100 agents, each with budget of 1000 units. Because the distances are similar 

and the net benefit of good1 is so high, all agents decide to spend all of their budget on good1 

and therefore only shop at store1. Next, we run the model multiple times, increasing the price 

for good1 5 units at each run; that is 15, 20, 25, and 30, respectively. Then, we run the model 

again with the same price variations but with a lower budget constraint of 500 units per agent. 

Figure 12 shows the resulting changes in aggregate utility.  

 
 Figure 12. Obtained utility for budget 1000 and 500 

The outcome is not surprising since there are no substitutes for good 1. As the price increases, 

agents can buy less of good1 but they do not switch to other goods because the net benefit for 

good1 is still higher than for goods 2 and 3. When we lower the budget constrain, the utility 

curve shifts down and flattens somewhat, demonstrating the expected effect of lower incomes 

on consumer purchasing decisions. 

The results above assume that consumers are maximisers, but most consumers are satisficers. 

Instead of spending considerable time and effort seeking out a basket of goods with maximum 

utility, they select any affordable basket of items with utility larger than their satisfaction 

threshold (Roozmand and Webster, 2014). In this test we aim to show that how satisficing 

behavior can change the purchasing choices of consumers when goods vary by price, quality, 

and costs of travel. The following goods were generated for this test. 
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Table 9. Items attributes for testing satisficing behavior 

Stores Quality Price 
Distances 

d1 d2 d3 d4 d5 d6 

Store1 (Good1) 11 10 

5 10 15 10 5 5 Store2 (Good2) 12 10 

Store3 (Good3) 11 15 

Given that travel costs are negligible, store 2/good 2 clearly can provide consumer agents 

with the highest utility when they spend their entire 500-unit budget. To investigate the effects 

of satisficing, we vary the satisfaction threshold by specifying it as a percentage of the 

maximum possible utility available. As shown in Table 10, we tested three satisfaction 

thresholds (82%, 46%, and 30% of maximum respectively.  

Table 10. Results for testing satisficing behavior 

Budget 
Satisficing 

threshold 
Utility 

Distance 

cost 
Basket 

Visited 

stores 
Run time 

500 Maximizer 76 20 Good2=48 0- 2 - 0 Run 1 

500 
82% of Max 

Utility 
63 25 

Good1=6 

Good2=41 

Good3=0 

0-1-2-0 Run 2 

500 
46% of Max 

Utility 
35 25 

Good1=12 

Good2=32 

Good3=2 

0-1-2-3-0 Run 3 

500 
30% of Max 

Utility 
23 25 

Good1=4 

Good2=34 

Good3=6 

0-1-2-3-0 Run 4 

In the maximizing scenario (Run 1), the consumer selects the best basket of items including 

good 2 from store 2, and it gets a total utility of 76, which is the highest possible utility. Store 

2 is farther away than store 1, but the consumer prefers to purchase from store 2 since the higher 

utility cancels out the higher travel cost. If we instead allow the consumer to satisfice at 82% 

of highest utility, it will select the first basket of goods that it finds which has a total utility of 

63 or higher. In this case, the agent chooses both stores 1 and 2 for its purchases. It buys 6 of 

good 1 and 41 of good 2, reducing utility both by buying lower-utility items and by traveling 

more than necessary. As we decrease the satisfaction threshold to 46% and 30% in Run 3 and 

4, respectively, we see that the consumer agent chooses even low quality items from other stores 

with lower quality. As expected, total utility decreases as the satisfaction threshold decreases, 

reflecting consumers’ real-world preferences for convenience and minimizing transaction costs.  

3.2.2. Indifference curve based on budget constraint 

Consumers can get the same utility from different combinations of goods. Economists use 

indifference curves to represent these tradeoffs using two representative goods. In this section, 
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we aim to check the purchasing behavior of consumer agent encountering two goods where 

different combinations of goods hold the same utility. To maintain tractability, we limit this 

analysis to only two goods: Good 1 with quality 10 and price 10, and Good 2 with quality 5 and 

price 5 (see Table 11). We do not test the goods in other stores, as it is difficult to interpret 

results with so many variables. 

Table 11. Item’s attributes for testing indifference curve 

Stores Quality Price 
Distances 

d1 d2 d3 d4 d5 d6 

Store1 
Good1(10) 

Good2(5) 

Good1(10) 

Good2(5) 
5 10 15 10 5 5 

Store2 - - 

Store3 - - 

In this test setting, purchasing two items of Good2 has the same utility as purchasing one 

item of Good1. Therefore, there are many combinations which have the same utility for the 

consumer agent. We have tested the model for 100 times with budgets 1000 and 500. The results 

are shown in Figure 14. 

 
 Figure 13. Indifference curve based on budget constraint for good1 and good2 

With a budget constraint of 1000, and travel cost of 10 units, the consumer can use 990 units 

of its budget for purchasing goods. The indifference curve shows a clear 2-to-1 tradeoff between 

good 1 and good 2, with each combination maintaining the maximum utility at of 188 at this 

budget constraint. Lowering the budget constraint to 500 shifts the indifference curve to the left 

but does not alter the slope of the curve. Traditionally, indifference curves tend to be convex to 

the origin, reflecting diminishing marginal utility, but adding this dimension to our agent’s 

behavior is a task for future work.    
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4. Conclusion and future work 

In this paper, we propose a genetic algorithm equipped with the Floyd-warshall algorithm to 

simulate satisficing or maximizing consumer behavior. We applied a chromosome structure 

including items, utilities, and routes’ costs to show a basket of items selected from different 

stores and calculate the total cost. The Floyd-Warshall algorithm helped find the shortest route 

among all possible routes from selected stores. The main novelty of this paper is that it proposes 

a genetic algorithm with a specific structure of chromosomes to solve this complex problem in 

economics. We simulated the model, showed how the model works in different scenarios, and 

presented that the model reproduces results compatible with theories in economics.  

Although we believe that the model is well-designed and works reasonably well for this 

problem, it has two main weaknesses. First, the proposed algorithm is slow for a large and 

complex graph, including stores and their distances, so it is not suitable for modelling a big city 

with a large number of stores. Finding a more efficient approach would be a good next step in 

model development. Second, as the number of nodes and items increases, it becomes more and 

more difficult to assess the effects of changes in the model’s parameters on model outcomes. 

More in-depth analysis is needed to fully understand how the model works, and then it should 

be possible to make the model more realistic by adding cultural knowledge, more diverse 

personal preferences, and other determinants of consumer behavior.  
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