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Closed-loop supply chains (CLSCs) are increasingly recognized as essential frameworks for achieving operational 

efficiency and sustainability in modern industries. This study focuses on optimizing production scheduling, 

maintenance strategies, and quality control within CLSCs, specifically tailored for the home appliances industry. 

The proposed model integrates preventive and corrective maintenance policies, scheduling, and quality 

management into a unified system that minimizes costs while enhancing reliability and sustainability. The Strategic 

Choice Approach (SCA) was employed to structure complex decision-making processes, leveraging the expertise 

of industry professionals to identify key uncertainties and variables. A Genetic Algorithm (GA) was utilized to 

optimize decision variables, including sample size, sampling intervals, control limits, and maintenance schedules, 

ensuring robust solutions under real-world constraints. The model categorizes machine failures into immediate 

and delayed modes, providing tailored strategies for each to maintain system performance. Comparative analyses 

highlight the integrated model’s superior cost-effectiveness and operational benefits over traditional independent 

approaches. Sensitivity analyses further demonstrate the robustness of the model under varying operational 

conditions, validating its adaptability and scalability. By addressing the interconnected challenges of maintenance, 

scheduling, and quality control, this research offers a practical and holistic solution for CLSCs, contributing to 

improved operational resilience, customer satisfaction, and alignment with sustainability objectives. The decision-

making process provides valuable insights and confident recommendations for future research. 
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1. Introduction 

Supply chains are the lifelines of modern industries (Taghipour et al., 2023b), underpinning the 

processes that deliver goods and services efficiently and sustainably. In recent years, the 

concept of closed-loop supply chains (CLSCs) (Foukolaei et al., 2024) has gained significant 

attention as industries recognize the importance of integrating forward and reverse logistics to 

manage resources more effectively (Gholian-Jouybari et al., 2024). CLSCs are particularly 

valuable in sectors such as the home appliances industry, where product lifecycles demand 

robust mechanisms for recycling (Ghaedi et al., 2024), remanufacturing, and waste reduction 

(Ramezani et al., 2024). This approach minimizes environmental impact and creates 

opportunities for cost savings and enhanced customer satisfaction (Taghipour et al., 2024), 

aligning with global sustainability goals (Taghipouret al., 2023). Scheduling and production 

planning are critical elements within supply chains, influencing resource allocation, production 

efficiency, and customer fulfillment (Shambayati et al., 2023). Effective scheduling ensures 

that production meets demand while minimizing delays and costs, whereas robust planning 

aligns operational strategies with long-term business goals (Scheller et al., 2023). These factors 

are even more complex in CLSCs, where production planning must accommodate uncertainties 

in reverse logistics, such as the timing and quality of returned products (Gholizadeh et al., 

2023). Moreover, integrating maintenance strategies and quality control into scheduling 

processes becomes essential to ensure operational reliability and product integrity (Corsini et 

al., 2024). Balancing these interdependencies for industries like home appliances is key to 

maintaining competitiveness in increasingly dynamic markets  (Bhattacharya et al., 2024). 

Systems thinking provides a practical framework for addressing these complexities by 

emphasizing the interconnectedness of various elements in CLSC operations (Coenen et al., 

2018). By viewing production scheduling, maintenance, and quality control as parts of a unified 

system, systems thinking enables organizations to identify feedback loops, dependencies, and 

potential trade-offs (León & Calvo-Amodio, 2017). This perspective is particularly valuable for 

CLSCs, where the flow of materials, information, and resources must be optimized across 

multiple stages (MahmoumGonbadi et al., 2021). Industries can move away from siloed 

approaches through systems thinking and develop integrated strategies that enhance overall 

performance, resilience, and sustainability  (Jaaron & Backhouse, 2019).  

This study is motivated by addressing these challenges in CLSC operations. Specifically, it 

focuses on developing an integrated model for production scheduling, preventive and corrective 

maintenance, and quality control in the home appliances industry. Using the Strategic Choice 

https://doi.org/10.22067/jstinp.2025.89236.1121
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Approach (SCA) to identify key decision variables and mathematical modeling to optimize 

them (Antweiler & Schlund, 2023), the study aims to provide a comprehensive solution that 

minimizes costs and enhances system performance. By bridging theoretical advancements with 

practical applications, this research contributes to the ongoing discourse on CLSC optimization 

and demonstrates the value of holistic decision-making frameworks. 

The remainder of this paper is organized as follows. The literature review examines previous 

studies on CLSCs, production scheduling, and integrated maintenance strategies, highlighting 

existing gaps and opportunities. The methodology section details the use of SCA and the 

development of the mathematical model. The results section presents the findings, illustrating 

the effectiveness of the proposed model with numerical examples. The discussion provides 

insights into managerial implications, highlighting the advantages of integrated approaches 

over independent models. Finally, the conclusion summarizes the study's contributions and 

outlines directions for future research in advancing CLSC strategies. 

2. Literature review 

Recent advancements in closed-loop supply chains (CLSCs) have emphasized the importance 

of integrating innovative optimization methods to enhance efficiency and sustainability. Recent 

studies in the field of closed-loop supply chains are listed in the Table 1. Aliahmadi et al. (2023) 

developed a multi-echelon CLSC model that incorporated pricing decisions and queuing 

systems under uncertainty. Their approach utilized Flexible Robust-Fuzzy Optimization 

(FRFO) and meta-heuristic algorithms, such as G-HHO and PSO, to maximize net present value 

(NPV). Results showed that increasing the number of production lines reduced queue lengths 

and enhanced profitability, with the G-HHO algorithm performing best for large-scale 

problems. Similarly, Gholizadeh et al. (2023) proposed a closed-loop green supply chain 

network incorporating redundancy strategies for reliability and eco-friendliness. Their model, 

which applied hybrid heuristics and meta-goal programming, achieved notable cost reductions, 

increased eco-friendly part usage, and improved system reliability through active standby 

strategies. Scheller et al. (2023) analyzed CLSCs for lithium-ion batteries using a multi-stage, 

multi-product, multi-period production planning approach in the context of network structures. 

The study compared centralized, decentralized, and circular factory setups, demonstrating that 

circular factories outperformed others in reducing transportation costs and enhancing material 

flow in the short term. Corsini et al. (2024) extended the focus to production capacity and 

control policies, evaluating four production control strategies in CLSCs. Their findings 

https://doi.org/10.22067/jstinp.2025.89236.1121
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highlighted the Adaptive Hedging Corridor Policy as a practical approach for enhancing 

customer service levels and minimizing the bullwhip effect, with return flows and 

manufacturing operations playing critical roles in supply chain performance. 

Multi-objective optimization models have also been pivotal in addressing CLSC challenges 

under uncertainty. Yousefi et al. (2021) presented a model for aggregate production planning, 

optimizing costs, customer satisfaction, and product quality through LP-metric and LINGO 

software. Applied to military industry data, the model effectively balanced conflicting 

objectives. Roshani et al. (2023) tackled capacitated lot-sizing and scheduling in CLSCs, 

incorporating sequence-dependent setup times. By leveraging large-bucket mixed-integer 

programming and Grey Wolf optimization algorithms, their model minimized costs across 

manufacturing, remanufacturing, inventory holding, and energy utilization, demonstrating the 

effectiveness of these algorithms in solving NP-hard problems. Emerging technologies like IoT 

and artificial intelligence (AI) are transforming CLSC operations. Shambayati et al. (2023) and 

Shambayati et al. (2022) explored IoT-enabled virtual CLSCs, revealing significant 

improvements in profitability and efficiency through advanced tracking and defect management 

systems. Meanwhile, Bhattacharya et al. (2024) provided a comprehensive review of AI 

applications in CLSCs, identifying ten popular techniques and proposing a framework with 

fifteen research questions for future exploration. Hussaini et al. (2023) contributed to CLSC 

viability by proposing a multi-period, multi-season model to manage fluctuations in demand 

and costs, emphasizing the importance of accurate cost forecasting and capacity adjustments. 

Table 1. Summary of the related recent studies 

Author(s) Aim Methods Findings 

(Aliahmadi et 

al., 2023) 

To model a multi-echelon 

closed-loop supply chain with 

pricing decisions and queuing 

systems under uncertainty. 

Flexible Robust-Fuzzy 

Optimization (FRFO) and 

meta-heuristic algorithms 

(G-HHO, PSO, ALO, 

GWO) 

Maximized net present value (NPV), 

reduced queue lengths, and improved NPV 

with increased production lines. G-HHO 

algorithm provided the best performance 

for large sample problems. 

(Gholizadeh 

et al., 2023) 

To design a closed-loop green 

supply chain network with a 

redundancy strategy for eco-

friendly parts and maximum 

reliability. 

Multi-objective mixed-

integer program with a 

hybrid heuristics 

algorithm and multi-

choice meta-goal 

programming 

Achieved a 15.3% decrease in total cost, 

2.83% increase in eco-friendly parts, and 

11.25% increase in reliability with active 

standby strategy. 

(Scheller et 

al., 2023) 

To develop a production 

planning model for closed-loop 

supply chains in lithium-ion 

batteries, analyzing different 

network structures. 

Multi-stage, multi-

product, multi-period 

production planning 

approach 

Circular factories outperformed centralized 

and decentralized networks in the short 

term, improving material flow and reducing 

transportation costs. 

(Corsini et 

al., 2024) 

To analyze how production 

capacity and production control 

policies impact the performance 

of closed-loop supply chains. 

Comparison of four 

production control 

policies using simulation 

Adaptive Hedging Corridor Policy 

enhanced customer service levels and 

reduced the bullwhip effect. Sensitivity 

analysis highlighted the importance of 

return flows and manufacturing operations. 

https://doi.org/10.22067/jstinp.2025.89236.1121
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Author(s) Aim Methods Findings 

(Yousefi-

Babadi et al., 

2021) 

To present a multi-objective 

model for aggregate production 

planning in a closed-loop supply 

chain under uncertain 

conditions. 

LP-metric and LINGO 

software for multi-

objective optimization 

Optimized costs, customer satisfaction, 

supplier satisfaction, and product quality; 

solved through numerical examples and 

actual data in military industry. 

(Roshani et 

al., 2023) 

To address capacitated lot-

sizing and scheduling with 

sequence-dependent setup times 

in a closed-loop supply chain. 

Large-bucket mixed-

integer programming, 

matheuristic, and grey 

wolf optimization 

algorithms 

Minimized manufacturing, 

remanufacturing, setup, inventory holding, 

backlogging, and energy costs. The 

proposed algorithms demonstrated 

effectiveness in solving the problem. 

(Shambayati 

et al., 2023) 

To optimize a virtual closed-

loop supply chain (VCLSC) 

using IoT under uncertainty. 

Grey Wolf algorithm and 

Firefly algorithm for 

optimization 

The Firefly algorithm outperformed others, 

leading to higher profit for the VCLSC. 

The use of IoT significantly increased 

profits by tracking defective parts and 

improving chain efficiency. 

(Bhattacharya 

et al., 2024) 

To review the applications of 

Artificial Intelligence (AI) in 

closed-loop supply chains 

(CLSC) and propose future 

research directions. 

Systematic literature 

review of 303 peer-

reviewed articles 

Identified 10 popular AI techniques and 7 

CLSC subfields where AI could bring 

significant benefits. Proposed a framework 

with 15 research questions for future 

research. 

(Hussaini et 

al., 2023) 

To develop a multi-period, 

multi-season model for ensuring 

supply chain viability under 

fluctuations. 

Mixed-integer 

mathematical model 

solved with CPLEX 

solver 

Highlighted seasonal supplier layoffs, 

capacity adjustments, and accurate cost 

forecasting as critical strategies for 

maintaining supply chain viability. 

(Shambayati 

et al., 2022) 

To optimize virtualization in 

closed-loop supply chains using 

IoT. 

Grey Wolf and Firefly 

algorithms for 

optimization; sensitivity 

analysis 

IoT integration significantly enhanced 

efficiency and profitability of the virtual 

supply chain by improving tracking, 

product delivery, and defect management. 

 

While significant advancements have been made in optimizing closed-loop supply chains 

(CLSCs), gaps remain in fully integrating key aspects such as production scheduling, 

maintenance strategies, and quality control under uncertainty. Existing studies primarily focus 

on isolated components, such as pricing decisions (Aliahmadi et al., 2023), green supply chain 

design (Gholizadeh et al., 2023), or specific network structures (Scheller et al., 2023). However, 

the interplay between these elements, particularly in real-world constraints like fluctuating 

demand, multi-objective trade-offs, and operational disruptions, is less explored. The novelty 

of the current study lies in its holistic approach to optimizing CLSCs by integrating production, 

maintenance, and quality management using advanced optimization techniques. By addressing 

these interdependencies and incorporating dynamic factors such as machine reliability and 

system efficiency, the study bridges existing gaps. It offers a unified framework that enhances 

cost-effectiveness, sustainability, and decision-making robustness in complex supply chain 

environments. 
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3. Methodology 

The study employed the Strategic Choice Approach (SCA) (Khazaei et al., 2021b) to design an 

optimized closed-loop supply chain model tailored for the home appliances industry. SCA, a 

methodology from the soft operational research category (Dehghan Nayeri et al., 2018), is a 

collaborative decision-making framework that emphasizes the incremental management of 

uncertainties and involves participants with diverse expertise (Khazaei et al., 2021a). For this 

research, nine home appliance industry experts were convened in structured workshops  

(Paucar-Caceres et al., 2020). These experts represented various domains: production, logistics, 

quality control, and sustainability. The workshops were designed to systematically identify the 

key decision areas, uncertainties, and comparison criteria essential for designing an effective 

closed-loop supply chain. The SCA process unfolded through its four strategic modes—

shaping, designing, comparing, and choosing—enabling the group to build a commitment 

package for decisions to be implemented incrementally (Franco, 2007). The discussions focused 

on defining uncertainty boundaries, such as the working environment, guiding values, and 

interrelated choices, specific to the home appliances sector (DeCarolis et al., 2017). For 

example, uncertainties about product lifecycle, recycling processes, and customer return 

behaviors were identified and categorized. By navigating these uncertainties, the group 

collaboratively formulated assumptions about the structure and functionality of the supply 

chain, ensuring that the proposed model addressed practical challenges and aligned with 

industry needs. 

The assumptions derived from the SCA workshops (Figure 1) were systematically converted 

into a mathematical model for optimization, which will be elaborated on in subsequent sections. 

This conversion involved translating qualitative insights into quantitative parameters, enabling 

precise modeling of production scheduling, maintenance strategies, and reverse logistics flows. 

The mathematical formulation integrated these assumptions into a robust framework to 

minimize costs and improve efficiency across the closed-loop supply chain. This integration of 

SCA with mathematical modeling provides a unique methodological approach, bridging expert-

driven decision-making with quantitative optimization for practical implementation (Awasthi 

et al., 2018). Therefore, our model in this paper categorizes machine failures into two distinct 

modes (Bektur, 2020): 1) The first type of breakdown mode (𝐹𝑀1): The breakdown of the 

machine is determined immediately. 2) The second type of failure mode (𝐹𝑀2): Machine failure 

after production is determined by transferring the process average in the discussion of process 

quality. 

https://doi.org/10.22067/jstinp.2025.89236.1121
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 Figure 1. The designed flow of CLSC model after SCA employment 

3.1. Assumptions and descriptions 

Here are the assumptions the authors will examine: 

1) Corrective maintenance and repairs are fundamentally minimal. Post-correction, the 

equipment’s lifespan remains unchanged, and the duration of the corrective activity is 

included in its operational life. 

2) Maintenance and repairs are inherently partial; they only partially address the issue, 

leading to potential recurring problems. 

3) For quality control, the authors consider only one characteristic: CTQ1. 

4) The production process starts from the state under control. The mean and standard 

deviation of CTQ are μ and σ as follows. 

5) A specific error that happens randomly and causes the process average to σ when it 

remains constant. It transfers from 𝜇0 to δ+μ0  μ1 

6) The control chart monitors the process x̅. 

Table 2 shows the variables and parameters of the CLSC model. 

Table 2. Variables and parameters 

Variables / Parameters Definition 

ARL2E 
The average sample length is when the process is out of control for external and 

environmental reasons. 

ARL2M/C The average sample length when the process is out of control due to machine wear. 

ARL1 The average sample length when the process is under control. 

K Coefficient of control limit. 

 Clp The cost of stopping production. 

CRej The cost of returning the product. 

Cresetting The cost of restoring the process to the first state. 

prdE Overall evaluated time. 

[CCM]FM1
 Expected cost of maintenance and corrective repairs due to the first mode error. 

CPM Expected cost of preventive maintenance and repairs. 

                                                 

1 Critical to Quality 

https://doi.org/10.22067/jstinp.2025.89236.1121
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Variables / Parameters Definition 

E [TCycle] Duration of the process. 

T1  The time required to determine the occurrence of the specified reason. 

E [Trestore] 
The time required to restore the process to the first state or to repair the machine if the 

process has gone out of control due to the environment or machine depreciation. 

[TCQ]process−failure The cost of quality degradation due to process defects. 

𝜆1 Process failure rate due to environmental and external reasons. 

𝜆2 The machine breakdown rate due to machine depreciation. 

 CFCCM Fixed cost of maintenance operations and corrective repairs. 

 CFCPM Fixed cost of preventive maintenance and repairs. 

LC Cost of labor for maintenance and repairs. 

MTCM  Average time required for maintenance and corrective repairs. 

MTPM  Average time required for preventive maintenance and repairs. 

Nf Average number of failures. 

tPM Interval of maintenance and repair activities. 

βE The possibility of a second type of error due to an external reason. 

βM/C The possibility of the second type of error due to the depreciation of the machine. 

PFM1  Probability of occurrence of the first failure mode. 

PFM2  Probability of occurrence of the second failure mode. 

𝜆 Process failure rate. 

PR Production rate. 

N Sample size. 

Ts Sampling time. 

α First type error. 

H Time interval between sampling. 

3.2. Model description 

If FM1 occurs, the machine stops immediately. Corrective operations are applied to repair it. 

Therefore, the cost of maintenance and corrective repairs ([𝐶𝐶𝑀]𝐹𝑀1
) consists of the cost of idle 

time, the cost of repairing and restoring the machine to its original state (Bocken et al., 2019). 

The machine's condition influences the effects of FM2 and results in an increased product return 

rate. In other words, FM2 impacts the process's return rate. It is assumed that the process halts 

immediately upon detecting FM2, and corrective measures are implemented to restore normal 

operating conditions. Additionally, the process may deteriorate due to external factors (E), such 

as environmental conditions, operator errors, or improper tool usage (Calabrese et al., 2019). 

The process transitions to an out-of-control state if an external event (E) occurs. Process 

monitoring accomplishes detection of FM2 or an external cause (E). In this article, a control 

chart mechanism is used for monitoring. The control chart design parameters include sample 

size (n), sampling interval (h), and coefficient (k) to determine the distance from the central line 

to the control limit. Therefore, the total cost of process failure due to E and FM2, i.e., 

[𝑇𝐶𝑄]𝑝𝑟𝑜𝑐𝑒𝑠𝑠−𝑓𝑎𝑖𝑙𝑢𝑟𝑒, include the cost of machine idleness, product return due to process 

https://doi.org/10.22067/jstinp.2025.89236.1121
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transfer, repair cost, sampling and inspection cost, and the deviation cost of CTQ target values 

(Centobelli et al., 2020). 

The authors need to account that both parameters, FM1 and FM2, are flawed and diminished. 

Reducing FM2 leads to increased costs due to out-of-control operations and quality issues. 

However, preventive maintenance requires resources and time that could be used for 

production. The cost of preventive maintenance (PM) includes the expense of process downtime 

(CPM) and the costs associated with maintenance and repairs. This article discusses the problem 

of determining the optimal values of the decision variables (n, h, k, 𝑡𝑃𝑀) to minimize the total 

cost per time unit ([𝑇𝐶𝑇]𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒∗𝑄𝑢𝑎𝑙𝑖𝑡𝑦) (Chaturvedi et al., 2017). It should be noted that 

the life of the equipment is reduced after preventive maintenance and repair according to the 

repair and return factor. The total cost per unit of time for maintenance and preventive repairs 

and control chart policy ([𝑇𝐶𝑇]𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒∗𝑄𝑢𝑎𝑙𝑖𝑡𝑦) is the ratio of the total cost of quality 

control ([𝑇𝐶𝑄]𝑝𝑟𝑜𝑐𝑒𝑠𝑠−𝑓𝑎𝑖𝑙𝑢𝑟𝑒), the total cost of preventive maintenance and repairs (CPM), and 

the total cost of machine breakdown ([𝐶𝐶𝑀]𝐹𝑀1
), to the evaluation time. The cost incurred due 

to FM2 includes the cost of process quality control. Therefore, the total cost is as follows per 

unit of time for the integrated model (Chen et al., 2023) in Equation 1: 

[𝑇𝐶𝑇]𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒∗𝑄𝑢𝑎𝑙𝑖𝑡𝑦  =  
1

𝑝𝑟𝑑𝐸
 ([CCM]FM1 + CPM + [TCQ]process-failure) (1) 

Where [𝑇𝐶𝑇]𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒∗𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = (n, h, k, 𝑡𝑃𝑀) and prdE. The time is planned and 

evaluated according to the analysis of what will be done. Therefore, the optimization problem 

can be Equation 2: 

Minimize [𝑇𝐶𝑇]𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒∗𝑄𝑢𝑎𝑙𝑖𝑡𝑦 

Subject to 

a1 ≤ n ≤ b1 

𝑎2 ≤ ℎ ≤ 𝑏2 

a3 ≤ k ≤ b3 

a4 ≤ tPM ≤ b4 

n, h, k, tPM ≥0 

(2) 

Where 𝛼i and bi are decision variables and upper and lower limit values. Next, the authors 

will describe the three cost functions within the objective function. For the specified evaluation 

period, expected cost models are derived for preventive and corrective maintenance related to 

FM1 and the cost of process failures due to external factors associated with FM2. To calculate 

the costs associated with corrective and preventive maintenance for FM1, the analyst needs the 

following information (Chen et al., 2018): The amount of time required for corrective 

https://doi.org/10.22067/jstinp.2025.89236.1121
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maintenance (CM) and preventive maintenance (PM) operations encompasses not only the 

actual maintenance and repair activities but also reasonable delays, such as waiting for labor, 

materials, or other necessary resources. These operations incur costs, including machine 

downtime, labor expenses, required materials, and associated fees. Additionally, equipment 

failure is always possible due to specific failure modes, highlighting the critical need for a 

comprehensive and proactive maintenance and repair strategy to ensure system reliability and 

operational efficiency (Chihambakwe et al., 2021). For the cost of maintenance and corrective 

repairs, the authors must have the following factors: 

1) Average duration needed for maintenance and corrective repairs: 𝑀𝑇𝐶𝑀  

2) System production rate: PR 

3) The cost of stopping production during maintenance and corrective repairs:  Clp 

4) Cost of labor for maintenance and corrective repairs: LC 

5) Fixed cost of maintenance operations and corrective repairs:  CFCCM 

6) The possibility of the first mode failure: PFM1
 

7) Average number of failures: Nf 

The cost of maintenance and corrective repairs on 𝐹𝑀1 is calculated as Equation 3: 

[CCM]FM1
= [[PR.Clp+LC] + CFCCM] × PFM1

× Nf (3) 

where [𝑀𝑇𝐶𝑀 .[PR.𝐶𝑙𝑝+LC] + 𝐶𝐹𝐶𝐶𝑀] is the cost of machine failure due to maintenance and 

corrective repairs. The variable is 𝑡𝑃𝑀 in Equation 2-3 where 𝑁𝑓 is a function that lies in it, 

discussed in the following. 

The following should be considered to obtain a cost model for preventive maintenance and 

repairs: 

1) Average time required for preventive maintenance and repairs: 𝑀𝑇𝑃𝑀  

2) System production rate: PR 

3) The cost of stopping production during preventive maintenance and repairs:  𝐶𝑙𝑝 

4) Cost of labor for preventive maintenance and repairs: LC 

5) Fixed cost of preventive maintenance and repairs:  𝐶𝐹𝐶𝑃𝑀 

6) The possibility of the second mode failure: 𝑃𝐹𝑀2
 

7) Time of the entire evaluated course: 𝑝𝑟𝑑𝐸 

The expected total cost of preventive maintenance and repairs will be as Equation 4: 

𝐶𝑃𝑀= [𝑀𝑇𝑃𝑀 . [PR. 𝐶𝑙𝑝+LC] + 𝐶𝐹𝐶𝑃𝑀] × 
𝑝𝑟𝑑𝐸

𝑡𝑃𝑀
 (4) 

where [𝑀𝑇𝑃𝑀 . [PR. 𝐶𝑙𝑝+LC] + 𝐶𝐹𝐶𝑃𝑀] is the cost of machine downtime is due to preventive 

maintenance and repairs and 
𝑝𝑟𝑑𝐸

𝑡𝑃𝑀
 = 𝑁𝑃𝑀 . The number of preventive maintenance and repairs is 

rounded to a smaller integer. Building on the work of Govindan et al. (2016), the authors have 
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developed a novel model that optimizes product return costs, a unique approach to maintenance 

and repair costs.  In new studies, the number of maintenance and corrective repairs is obtained 

by simulating machine defects for the given evaluation period, explained in the next section. 

Next, the total cost of the process defect of [𝑇𝐶𝑄]𝑝𝑟𝑜𝑐𝑒𝑠𝑠−𝑓𝑎𝑖𝑙𝑢𝑟𝑒  is calculated. Then, the 

authors calculate the length of the period E[𝑇𝐶𝑦𝑐𝑙𝑒]. The period length refers to the anticipated 

duration between successive controlled intervals. During these intervals, costs arise from 

process sampling, product defects, and false alarms. If the process deviates from control, it is 

presumed that it cannot revert to a controlled state without external intervention. There are costs 

such as upgrading the level of the produced product, sampling, repair and return, searching for 

the reason, and stopping the process to return to the controlled state. After this, one period ends, 

and the successive periods begin. This section breaks down the expected cost of process quality 

control into costs. These costs include: 

1) Expected cost to find the specific cause, 

2) Sampling cost, 

3) Expected cost for out-of-control operations. 

4) The expected cost of restoring the process in a state that goes out of control due to 

machine wear or external and environmental reasons. 

It is assumed that 𝐶𝐹 is the fixed cost of sampling and 𝐶𝑉 is the cost of variable sampling. 

Therefore, the expected cost of sampling in one period, the sum of fixed and variable costs per 

unit of time, is as Equation 5: 

E[𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔]=(𝐶𝐹 + 𝐶𝑉 . 𝑛) × (𝐴𝑅𝐿2𝑀/𝐶  ×
𝜆2

𝜆
⁄ + 𝐴𝑅𝐿2𝐸 ×

𝜆2
𝜆

⁄ ) (5) 

Now, the authors calculate the expected cost due to the lack of quality in the out-of-control 

state, and in fact, the authors get the cost of the defective products produced when the process 

is in the out-of-control state. The cost of returning the product when the process is out of control 

due to machine failure is Equation 6: 

E[𝑐𝑜]𝑀/𝐶=(PR× 𝑃𝑀/𝐶 × 𝐶𝑅𝑒𝑗)× [ (h+n.𝑇𝑠) × (𝐴𝑅𝐿2𝑀/𝑐 ×
𝜆2

𝜆
⁄  +𝐴𝑅𝐿2𝐸  ×

𝜆1
𝜆

⁄  )-

𝜏+𝑇1)]× (
𝜆2

𝜆
⁄ ) 

(6) 

Moreover, when the process goes out of control due to an external and environmental 

factor, the return cost is Equation 7: 

E[𝑐𝑜]𝐸=(PR× 𝑃𝐸 × 𝐶𝑅𝑒𝑗)× [ (h+ n.𝑇𝑠) × (𝐴𝑅𝐿2𝑀/𝑐 ×
𝜆2

𝜆
⁄  +𝐴𝑅𝐿2𝐸  ×

𝜆1
𝜆

⁄  ) -𝜏+𝑇1)]×

(
𝜆1

𝜆
⁄ ) 

(7) 
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𝑃𝑀/𝐶 and 𝑃𝐸 are the probability of producing a defective product due to machine depreciation, 

external and environmental reasons, respectively. It is obtained from the Equation 8 and 9: 

𝑃𝑀/𝐶=1-Pr(LSL≤X≤USL)=1-Pr(
𝐿𝑆𝐿−(𝜇+𝛿𝑀/𝐶)

𝜎
≤N(0,1) ≤

𝑈𝑆𝐿−(𝜇+𝛿𝑀/𝐶)

𝜎
) 

𝑃𝐸=1- Pr(LSL≤X≤USL)=1-Pr(
𝐿𝑆𝐿−(𝜇+𝛿𝐸)

𝜎
≤N(0,1) ≤

𝑈𝑆𝐿−(𝜇+𝛿𝐸)

𝜎
) 

(8) 

 

(9) 

where USL and LSL are high and low-quality specification limits (tolerance). It is assumed 

that 𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔 is the cost of finding and restoring the original state. The expected cost amount 

is calculated for 𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔 in Equation 10: 

E[𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔]=[ 𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔 × 𝑇𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔]×( 
𝜆1

𝜆⁄ ) (10) 

The expected cost of the maintenance activity and corrective repairs due to the error, finding, 

and repairing the specific reason for the cause of the machine failure are show in Equation 11:  

E[cRepair]FM2
=[(MTCM).[PR.Clp+LC]+CFCCM] ×(

λ2
λ

⁄ ) (11) 

This cost includes stoppage of production, cost of labor, and fixed cost of maintenance and 

corrective repairs. Therefore, the expected cost of process failure in the desired period is 

according to Equation 12: 

E[𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠]=  E[𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔]+ E[𝑐𝑜]𝑀/𝐶+ E[𝑐𝑜]𝐸+ E[𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔]+ E[𝑐𝑅𝑒𝑝𝑎𝑖𝑟]𝐹𝑀2
 (12) 

It is assumed that the failure of the process is repeated naturally. The period will be the same 

whenever the process is transferred from the state under control to the state out of control and 

back to the first state. (The duration of the course will be fixed). If the authors have M periods 

of process failure in an evaluated time, the total cost is according to Equation 13: 

[𝑇𝐶𝑄]𝑝𝑟𝑜𝑐𝑒𝑠𝑠−𝑓𝑎𝑖𝑙𝑢𝑟𝑒=[E(𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠)]×M (13) 

In Equation 14, M is: 

M=
𝑝𝑟𝑑𝐸

𝐸[𝑇𝑐𝑦𝑐𝑙𝑒]
 (14) 

The expected course time is the sum of the following terms: 

1) the desired period for the specific cause to occur, 

2) the desired duration for analyzing and examining a sample and the graph of the results, 

3) the desired period until the chart gives us a sign of leaving the controlled state, 

4) the desired period to discover and analyze the specific reason that occurred, 

5) The desired period to return the process to the first state if the defect of 𝐹𝑀2 is due to 

an external reason or to repair the process if the defect is due to the reason. 
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It is assumed that the time of the controlled state follows an exponential distribution with a 

mean of 1 𝜆⁄ . The failure rate value is independent in the statistical discussion. Therefore: 

ARL1= 1 𝛼⁄  (15) 

In Equation 16, α is α = Pr (𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙|𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and it is based 

on the calculations in quality control: 

𝛼 = 2 F(-k)   (16) 

where F will be the cumulative normal distribution, Process failure rate: 𝜆, Coefficient of 

control limit: k, and Sampling period: h. It is supposed that τ is the expected time of occurrence 

and a specific reason. When the specified reason occurs between the i and i+1 samples. 

Therefore: 

𝜏= = ℎ
2⁄  (17) 

Hence, is 𝜏 the independent of i. where ARL2 is the average length of the period when the 

process has moved to an out-of-control state. According to the quality control discussion, if the 

taken samples are independent, therefore: 

ARL2M/C=1
1 − βM/C

⁄       (18) 

ARL2E=1
1 − βE

⁄  (19) 

β= Pr(𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 | 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) (20) 

𝛽𝑀/𝐶=Pr(𝐿𝐶𝐿 ≤ 𝑥 ̅ ≤ 𝑈𝐶𝐿|𝜇 = 𝜇1 = 𝜇0 + 𝛿𝑀/𝐶𝜎𝑝) (21) 

𝛽𝐸=Pr(𝐿𝐶𝐿 ≤ 𝑥 ̅ ≤ 𝑈𝐶𝐿|𝜇 = 𝜇1 = 𝜇0 + 𝛿𝐸𝜎𝑝) (22) 

Since it is X̅~N(μ, σP
2/n) and the upper and lower control limits are equal to Equation 22 and 24 : 

UCL=𝜇0 + 𝑘𝜎𝑝/√𝑛 (23) 

LCL=𝜇0 − 𝑘𝜎𝑝/√𝑛 (24) 

Then we will have: 

𝛽𝑀/𝐶=F(
𝑈𝐶𝐿−(𝜇0+𝛿𝑀/𝐶𝜎𝑝)

𝜎𝑝/√𝑛
) - F(

𝐿𝐶𝐿−(𝜇0+𝛿𝑀/𝐶𝜎𝑝)

𝜎𝑝/√𝑛
) (25) 

𝛽𝐸=F(
𝑈𝐶𝐿−(𝜇0+𝛿𝐸𝜎𝑝)

𝜎𝑝/√𝑛
) - F(

𝐿𝐶𝐿−(𝜇0+𝛿𝐸𝜎𝑝)

𝜎𝑝/√𝑛
) (26) 

Where F is the indicator and the standard normal cumulative distribution function. The 

equation 25 and 26 can be simplified as Equation 27 and 28: 
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𝛽𝑀/𝐶=F(𝑘 − 𝛿𝑀/𝐶√𝑛) − F(-𝑘 − 𝛿𝑀

𝐶

√𝑛) (27) 

𝛽𝐸=F(𝑘 − 𝛿𝐸√𝑛) − F(-𝑘 − 𝛿𝐸√𝑛 ) (28) 

For an n sample, the time is equal to n. Ts to analyze the samples and the graph result, where 

𝑇𝑠 is the sampling time. The expected time is out of control from the occurrence of a specific 

reason until the process. As described in Equation 29: 

[ (h+ n.𝑇𝑠) × (𝐴𝑅𝐿2𝑀/𝑐 ×
𝜆2

𝜆
⁄  +𝐴𝑅𝐿2𝐸  ×

𝜆1
𝜆

⁄  )] –𝜏 (29) 

Failure rate due to external and environmental reasons: 𝜆1 

Breakdown rate due to machine depreciation: 𝜆2 

The authors suppose that 𝑇1 is the expected time to find specific a cause and E[𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒] is 

the expected time to restore the process to the first state due to external reasons or machine 

failure in an out-of-control state. A specific cause is searched for restoring the process. It 

depends on the type of error that occurred. For example, the process may have problems due to 

machine depreciation or external and environmental reasons. (E[𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒]) is the expected time 

for return or repair. As described in Equation 30::  

E[𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒]=(𝑇𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔 ×
𝜆1

𝜆
⁄ +𝑀𝑇𝐶𝑀 ×

𝜆2
𝜆

⁄  (30) 

Therefore, the time of a period becomes Equation 31: 

E[𝑇𝐶𝑦𝑐𝑙𝑒] =[( h +n. 𝑇𝑠) × (𝐴𝑅𝐿2𝑀/𝑐 ×
𝜆2

𝜆
⁄  +𝐴𝑅𝐿2𝐸  ×

𝜆1
𝜆

⁄  )] -𝜏+𝑇1 +E[𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒] (31) 

3.3. Process and machine failure rate 

A model for integrating and consolidating maintenance repairs and quality control has been 

presented. Now, the relationship between these two issues should be addressed. Maintenance, 

repairs, and quality control relationships can be related, and the total cost function can be 

integrated. Therefore, these two issues can be related to the objective function by obtaining a 

mathematical relationship for the process failure rate (𝜆). In this research, machine breakdowns 

are considered in two ways. One type is that the machine's performance is gradually 

depreciated, and the other is immediately affected. The probability of machine breakdowns is 

taken from previous information. Similarly, the process may fail due to machine wear or 

external and environmental reasons. The failure rate is supposed to be due to the machine's 

depreciation (λ2), erosion, and external and ecological reasons (λ1). Therefore, the failure rate 

of the process (λ) will be the sum of the failure rate due to the machine's wear and tear and the 
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failure rate due to external and environmental reasons (Equation 32). 

𝜆 = 𝜆1+𝜆2 (32) 

The authors consider the breakdown rate due to machine tear as Equation 33: 

𝜆1 =
1

𝑝𝑟𝑑𝐸
(𝑁𝑓) (33) 

And the failure rate will be determined due to external and environmental reasons: 

𝜆2=
1

𝑀𝑇𝑇𝐹
 (34) 

Where MTTF is the mean time between failures. 𝑁𝑓     and MTTF are calculated based on the 

data for each problem. The MTTF will be calculated by the data of each problem, information 

about the time intervals of maintenance operations and preventive repairs, and the number of 

failures occurring between intervals. Obtaining 𝐍𝐟 is the number of failures analytically and 

accurately for a short impossible planning period. Different ways and models have been 

proposed to do this, but they have often been time-consuming and complicated. 𝐍𝐟 is known as 

𝑡𝑃𝑀 function. The regression approximation method is used. The authors obtain according to 

the equation 35 an approximate amount by having the time intervals of preventive maintenance 

and repairs and the number of breakdowns in each interval in different intervals of a period. 

 𝑁𝑓=a (𝑡𝑃𝑀)𝑏 (35) 

 𝑁𝑓 and 𝑡𝑃𝑀 are predicted by regression, and the values a and b. To solve the mathematical 

model derived from the SCA, the authors employed a Genetic Algorithm (GA), a widely used 

meta-heuristic optimization technique suitable for addressing complex, multi-objective 

problems. GA was chosen for its robustness in exploring large solution spaces and its ability to 

find near-optimal solutions efficiently through evolutionary processes, such as selection, 

crossover, and mutation. The algorithm was configured to optimize decision variables—

including production scheduling parameters, preventive maintenance intervals, and quality 

control thresholds—to minimize the total cost and enhance overall supply chain performance.  

4. Implementing and results 

Recently, the use of integrated models compared to independent models has attracted the 

attention of many researchers. Researchers engage in integrated and consolidated modeling by 

studying and examining the characteristics of different subjects because this type of modeling 

has shown better results than independent modeling of subjects.  The critical point is whether 
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the proposed model will be more efficient and suitable than the independent model. Based on 

this, the integrated model is compared with two independent models of maintenance and repairs 

and quality control, and using a numerical example in both models will determine which model 

provides a better answer. For this purpose, the authors must first analyze the problem into two 

independent models of quality control and maintenance and repairs and then compare the 

performance of two integrated and independent models with a numerical example to see which 

model will provide a more optimal solution. Article model is specifically designed to address 

the critical areas of maintenance and repairs within a system. The primary goal is establishing 

an optimal time interval for implementing preventive maintenance and repairs directly 

influenced by the associated costs. 

 In this model, quality control is not considered. The possibility that the quality of the 

produced products may decrease is ignored. Therefore, the cost of maintenance and corrective 

repairs is considered in Equation 36: 

𝐶𝐶𝑀=[𝑀𝑇𝐶𝑀. [PR.𝐶𝑙𝑝+LC] +𝐶𝐹𝐶𝐶𝑀] × 𝑁𝑓 
(36) 

Also, the cost of preventive maintenance and repairs is according to equation 37. 

CPM=[MTPM. [PR.Clp+LC] +CFCPM] ×
prdE

tPM
 

(37) 

The cost of maintenance and repairs in a planned period will be the total cost of corrective 

and preventive maintenance and repairs (Equation 38). 

CMP=
1

prdE
(CCM + CPM) 

(38) 

The optimal time interval for preventive maintenance and repairs (tPM) is obtained by 

minimization of 𝐶𝑀𝑃. In this model, only the aspect of quality control in the existing system is 

considered, and maintenance and repairs are ignored. Therefore, the model has a different 

period. That is E[𝑇𝑐𝑦𝑐𝑙𝑒] changes to compare to the integrated model. The reason for these 

changes is apparent. In this model, the issue of machine tear and breakdowns related to the 

machine requiring repairs is no longer discussed, and the breakdown rate depends only on 

external and environmental reasons. If the issue of machine maintenance and repairs is not 

considered, the only things that affect the quality of the produced products are external and 

environmental factors. The length of the period obtained in the quality control model is almost 

similar to the size of the period in the integrated model. The failure rate is only specific to 
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external and environmental factors, which is shown by 𝜆𝐸.So the length of the period in the 

quality control model is according to Equation 39: 

𝐸[𝑇𝑐𝑦𝑐𝑙𝑒]𝑆𝑃𝐶=1
𝜆𝐸

⁄ +[(h+n𝑇𝑆)  ×(𝐴𝑅𝐿2)𝐸] - 𝜏+𝑇1+𝑇𝑟𝑒𝑠𝑒𝑡 (39) 

The cost function of quality control is equation 41 considering maintenance and repairs. 

𝐶𝑆𝑃𝐶=
(𝐶𝐹+𝐶𝑉.𝑛).( 1 𝜆𝐸

⁄ +𝑇0×
𝑆

𝐴𝑅𝐿1
)+[ℎ ×(𝐴𝑅𝐿2)𝐸] − 𝜏+𝑛𝑇𝑆

ℎ
+(𝛼. PR.𝐶𝑅𝑒𝑗).( 1 𝜆𝐸

⁄ + (PR×
(𝑅𝛿)𝐸

1−𝛽𝐸
×

𝐶𝑅𝑒𝑗). (h. (𝐴𝑅𝐿2)𝐸) – 𝜏+ 𝑛𝑇𝑆 + (𝐶𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔 × 𝑇𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔) 

(41) 

Therefore, the total cost of quality control per time unit is according to Equation 42:   

𝐶𝑃𝑈𝑇𝑆𝑃𝐶=
𝐶𝑆𝑃𝐶

𝐸[𝑇𝑐𝑦𝑐𝑙𝑒]𝑆𝑃𝐶
 (42) 

4.1. Numerical data 

This part implements a numerical example of the model to obtain optimal decision variables. 

First, a single-component device is considered part of a single-machine system. Let's assume 

the machine works three seven-hour shifts six days a week. The time for preventive 

maintenance and repairs is 7 times units, and the time for maintenance and corrective repairs is 

12 times. Suppose the process is under control. The value of the parameters of the given problem 

is shown in Table 3. 

Table 3. The value of the parameters of the given problem 

𝜹𝑬 𝜹𝑴/𝑪 𝑻𝒔 𝑻𝟎 𝑻𝟏 𝐓𝐫𝐞𝐬𝐞𝐭𝐭𝐢𝐧𝐠 𝑪𝑭 𝑪𝒗 Data 

1.5 0.6 
20

60
 1 1 2 100 50 value 

𝐶𝑅𝑒𝑗  𝐶𝑓𝑎𝑙𝑠𝑒−𝐴𝑙𝑎𝑟𝑒 𝐶𝐹𝐶𝐶𝑀 𝐶𝐹𝐶𝑃𝑀 𝐶𝐿𝑝 𝐿𝐶 𝐶𝑟𝑒𝑠𝑒𝑡  PR data 

2500 1200 10000 1000 400 500 5000 10 value 

 

Based on the data related to the problem, the authors implement this data in our model, and 

the proposed model is solved using MATLAB 2021 software. The optimal variables were 

obtained as follows: 

(n∗, k∗, h∗, tPM
∗)=(11,1.90,5.8,643) 

𝑓∗(11.8,1.76,5.73,648) =112 

In this part of paper two increments of 10 and 20 percent for each of the data 𝐶𝑉, 𝐶𝐹  

𝐶𝑟𝑒𝑗, T𝑟𝑒𝑠𝑒𝑡𝑡𝑖𝑛𝑔, 𝑇0, 𝑇1, 𝛿𝐸,𝛿𝑀/𝐶 are implemented. 

https://doi.org/10.22067/jstinp.2025.89236.1121
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Table 4. The amount of changes in some problem parameters at +(10%) and +(20%) levels 

+(%20) +(%10) First value Data 

1/8 1/65 1/5 𝛿𝐸 

0/72 0/66 0/6 𝛿𝑀/𝐶 

1/2 1/1 1 𝑇0 

1/2 1/1 1 𝑇1 

2/4 2/2 2 Tresetting 

3000 2750 2500 𝐶𝑅𝑒𝑗  

60 55 50 𝐶𝑣 

120 110 100 𝐶𝐹 

Table 5. The proposed method objective functions 

𝒇(𝒏, 𝒉, 𝒌, 𝒕𝒑𝒎) 𝒕𝒑𝒎 k h N 
Data 

 

118 653 1/90 7 11 𝛿𝐸 = 1/65 

120/5 655/5 1/92 6 10 𝛿𝐸 = 1/8 

119 654 1/85 8 12 𝛿𝑀/𝐶 = 0/66 

117 654 1/9 8 11 𝛿𝑀/𝐶 = 0/72 

112 652 1/8 6 12 𝑇0 = 1/1 

112 652 1/8 6 12 𝑇0 = 1/2 

112 652 1/8 6 12 𝑇1 = 1/1 

112 652 1/8 6 12 𝑇1 = 1/2 

113 651 1/95 6 12 Tresetting = 2/2 

114 652 1/9 6 12 Tresetting = 2/2 

113 650 1/85 6 13 𝐶𝑅𝑒𝑗 = 2750 

115 651 1/85 5/5 13 𝐶𝑅𝑒𝑗 = 3000 

112/5 652 1/8 6 12 𝐶𝐹 = 110 

114/5 652 1/85 8 13 𝐶𝐹 = 120 

113 651 1/8 9 11 𝐶𝑣 = 550 

114 650 1/8 9 11 𝐶𝑣 = 600 

 

Table 4-5, shows that when 𝛿𝐸 and 𝛿𝑀/𝐶  increase by 10 and 20 percent of the data. The values 

of the objective function and decision variables exhibit significant changes, yet our model 

remains largely unaffected by variations in other data. It underscores the critical importance of 

maintaining process control. Additionally, changes in the average standard deviation of the key 

qualitative characteristic are highly significant. 

4.2. More analysis 

Now, the question is raised: If the independent model is not used and the integrated model is 

not used, what difference will occur in the value of the optimal objective function? For this 

purpose, the data is put into the independent quality control cost function and solved by 

MATLAB software using GA. The result is as follows: 

(𝑛∗, 𝑘∗, ℎ∗)=(11,3.44,9) 

𝑓∗(11 ,3.44 ,9) =359.8 

https://doi.org/10.22067/jstinp.2025.89236.1121
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As can be seen, the value of the cost function in the quality control department alone is higher 

than the total cost in the integrated model, where maintenance, repairs, and quality control are 

considered together. Monitoring the production equipment and machines is essential, 

considering the maintenance and repairs of a quality control model. The manufactured products 

are produced according to acceptable quality with the maintenance and repairs of the equipment 

and machines. Production of products with the expected quality reduces the costs related to 

quality control. In this model, implementing preventive maintenance and repairs reduces the 

number of out-of-control states in the system, resulting in a higher percentage of products within 

control limits. By optimizing the intervals for preventive maintenance, repairs, and quality 

parameters, the total cost function can be minimized. The example illustrates that this approach 

significantly lowers the cost function compared to scenarios where maintenance and repairs are 

neglected. Therefore, integrating preventive maintenance and repairs with quality control 

proves to be much more effective. 

5. Discussion 

This study underscores the significance of integrating production scheduling, maintenance 

strategies, and quality control within CLSC. By addressing the interconnectedness of these 

elements, the proposed model aims to achieve both cost efficiency and operational 

sustainability. Leveraging the SCA in tandem with mathematical modeling, the study navigates 

the complexities of real-world systems, particularly in the home appliances industry. 

Categorizing machine failures into two modes and utilizing a GA for optimization, the model 

provides a robust framework for decision-making that accounts for uncertainties and variable 

constraints. Integrating maintenance and quality control highlights the importance of managing 

interdependencies to minimize production downtime and enhance system reliability. Decision 

variables such as sample size, control limits, and maintenance intervals emerge as critical 

factors in balancing operational costs with system performance. Preventive and corrective 

maintenance integration reduces costs while aligning operations with sustainability objectives, 

positioning the model as a valuable tool for industries aiming for eco-friendly practices and 

long-term resilience. Managers can leverage the integrated model to establish cost-effective 

maintenance schedules and elevate product quality, improving customer satisfaction and 

reducing return rates. By embedding sustainability into the supply chain framework, 

organizations can bolster their competitive edge while adhering to eco-friendly practices. The 

model’s adaptability, supported by its capacity to handle uncertainties, ensures its relevance 

https://doi.org/10.22067/jstinp.2025.89236.1121
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across diverse manufacturing contexts that demand precise quality and maintenance 

management. This discussion underscores the study’s contribution to advancing supply chain 

strategies and offers actionable insights for optimizing operations. 

6. Conclusion 

The challenge of production scheduling has long been a critical focus for engineers and 

researchers, with considerable advancements aimed at optimizing the process. Scheduling in 

single-machine systems has emerged as a particularly significant subfield involving the precise 

allocation of resources to ensure production efficiency. Concurrently, preventive maintenance 

(PM) and corrective maintenance (CM) have gained prominence as researchers aim to 

determine the optimal timing for such activities to reduce costs and prevent operational 

disruptions. In parallel, quality control has become a central concern, ensuring that products 

meet expected standards and that the production system remains within control limits. When 

deviations occur, identifying root causes and implementing corrective measures becomes 

essential to restoring order and maintaining productivity. 

Production managers are pivotal in aligning maintenance and quality control efforts to 

minimize costs and optimize system performance. The integration of these two aspects is 

critical, as failure to do so can lead to machine depreciation, increased product return rates, and 

customer dissatisfaction. Numerous models have been proposed to address these challenges, 

focusing on determining optimal intervals for maintenance and repairs while designing effective 

control charts to manage quality. These efforts aim to mitigate costs related to machine 

downtime, workforce repairs, and deviations from quality standards. The significance of these 

interconnected processes underscores the need for integrated approaches that consider the 

dependencies between maintenance and quality control rather than treating them in isolation. 

Recent studies have highlighted the synergistic benefits of combining maintenance, repairs, 

production scheduling, and quality control into integrated models. Integrated approaches 

consistently outperform independent models by addressing the dependencies between these 

elements, resulting in reduced costs and improved operational outcomes. The model presented 

in this study exemplifies this integration, encompassing maintenance, repairs, and quality 

control in a unified system. By optimizing four key decision variables—sample size, sampling 

interval time, control limit coefficient, and preventive maintenance intervals—, the model 

minimizes total costs while maintaining high standards of reliability and quality reliability and 

quality standards. A comparative analysis with independent models demonstrated the 

https://doi.org/10.22067/jstinp.2025.89236.1121
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superiority of the integrated approach, with significant cost reductions validating its 

effectiveness. 

Future research could explore extending the proposed integrated model to account for 

dynamic and stochastic variations in real-time production environments. Advanced 

technologies such as machine learning and IoT could enhance the model's adaptability, allowing 

for predictive maintenance and real-time quality monitoring. Additionally, the model could be 

applied to more complex, multi-machine systems and diverse industries to evaluate its 

scalability and versatility. Investigating the environmental and sustainability impacts of such 

integrations, particularly in closed-loop supply chains, could also yield valuable insights for 

industries aiming to align operational efficiency with eco-friendly practices. Future studies can 

further refine integrated models and provide comprehensive solutions for modern 

manufacturing challenges by addressing these areas. 
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