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In this paper, we propose a multi-stage continuous-MRP system using an optimal control model, considering the 

production lead time. In the proposed model, the lead time is specified for ordering work in process during the 

second stage and for final product manufacturing. Also, the intended dynamical system is a multi-stage production-

inventory system that follows a linear-quadratic optimal control model with a time delay for the state variables. In 

the proposed system, inventories are considered state variables, and the delivery levels and orders are control 

variables. The return stage is considered for items whose production has been defective. According to their 

situation, there are three destinations: the reworking stage, the recycling stage, or disposal. The amount of shipment 

to the next stage of production is based on their BOM utilization coefficient and the inventory one. This stage will 

consume all sent items at any time and will not create a surplus inventory. In this paper, time is considered a 

continuous parameter proportional to the constant production processes. For validation, the proposed optimal 

control model was simulated in a real study in the polymer industry. 
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1. Introduction 

Maintaining an inventory of raw materials incurs significant costs for manufacturing 

companies, particularly in the mass production industry, prompting managers to consider more 

carefully how to find the optimal solution to this problem. The primary achievement of a 

required material planning system is the planning of part and goods production, as well as the 

supply of raw materials, to ensure the production line can meet the required quantities at the 

necessary time. Proper scheduling of raw materials purchases, on the one hand, and timely 

ordering of parts for production, on the other, will lead to more reliable access to the raw 

materials needed on the production line and the timely delivery of products according to a 

comprehensive production schedule. If material requirements planning is successfully 

implemented, overall inventory costs will be significantly reduced. Most studies on finite- or 

infinite-capacity MRP systems focus on discrete-time systems. However, precise material 

requirements planning is required at a consistent time. Discrete materials requirements planning 

(DMRP) approach defines orders, demands, and products at a discrete time or Specific periods. 

Therefore, the discreteness in the DMRP approach implies a breakdown in production time. In 

this approach, the production parameters are defined over a fixed time. Thus, the available 

inventory is determined from the beginning of the period. 

In contrast, in Continuous Material Requirement Planning (CMRP) systems, the production 

parameters are determined at each moment of the planning time horizon. In some industries, 

such systems need to be considered because of their continuous production. In the 

petrochemical and petroleum industries, for example, production occurs continuously, and 

inventory levels are constantly changing. However, most of the research become established. 

On the other hand, in the last decade, the use of optimal control theory in production planning 

and inventory control has increased. Therefore, the literature on MRP and the application of 

optimal control theory in production inventory systems are discussed for better understanding. 

Sadeghian (2011) first introduced the CMRP approach and subsequently discussed its 

advantages over the DMRP. He then presented a three-step algorithmic method for determining 

scheduled orders in discrete MRP. In this algorithm, the scheduled orders were calculated 

without an optimization approach. Louly et al. (2012) attempted to plan components in 

assembly systems using the MRP approach. In their proposed model, the lead time was 

randomly selected. Grubbstrom and Tang (2012) examined the effect of demand scheduling 

and BOM conditions on the Solution space for production times. Milne et al. (2015) developed 

a mixed-integer programming approach to determine the optimal lead time for use in MRP 

https://doi.org/10.22067/jstinp.2025.94678.1164
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systems for discrete component production and a fixed-period batch size policy. Rossi et al. 

(2017) suggested a capacity compatible with the MRP model. In their proposed model, finite 

capacity was taken into account. They also determined a fixed lead time.  

Le Thi and Tran (2014) discussed a plan to optimize the costs of setting up, transporting, and 

inventing a multistage production system. Their optimization model was a nonlinear, complex 

integer programming model. Mezghiche et al. (2015) considered an integrated production 

forecasting system of tracking type. In their proposed system, the demand rate over a given 

period depends on the demand rate of the previous period and the stock level. Hatami-Marbini 

et al. (2020) considered a network of manufacturing machines based on the hedging point policy 

where the final goods were perishable, and the demand rate was constant. Lee et al. (2021) 

proposed a double-ended queuing model having backorders and customer abandonment. One 

side of their model stores back orders, and the other side represents inventory. 

Foul et al. (2012) presented an adaptive inventory system with an unknown deterioration rate. 

Vercraene and Gayon (2013) focused on the optimal control model of a production inventory 

system with disposable items and product returns. Pooya and Pakdaman (2021) presented a 

manpower planning problem from a continuous-time optimal control. Dhaiban (2022) proposed 

a new approach to finding integer solutions for the product inventory control model under a 

periodic review policy. Their approach was based on the modified equations of the Pontryagin 

maximum principle. Singer and Khmelnitsky (2021) considered a stochastic production-

inventory problem and solved it using optimal control methods. ElHafsi et al. (2021) addressed 

the problems faced by manufacturers in dealing with customers with diverse needs and 

determining which customers to serve when supply is limited, within a continuous-time 

integrated manufacturing and inventory control framework. Gao (2022) extended the 

production-inventory model with a stochastic term, and instead of analyzing steady states or 

guessing the shape of the solution, they focused on PDEs. She applied the operator division 

method after the Cole-Hopf transformation to the initial equation, rather than solving the ODE 

system. Shen et al. (2022) investigated the uncertain production-inventory problem with 

deteriorating items and developed an optimal control model in their research. They applied 

uncertainty theory to derive the optimal equation. Nakhaeinejad et al. (2023) used the optimal 

control theory to propose an order system and inventory management model. In their model, 

the order was regarded as a time-dependent function and a control variable. In addition, the 

need for each item was time-dependent and specified. The order and inventory system was 

indicated as an optimal control problem. 

https://doi.org/10.22067/jstinp.2025.94678.1164
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Hedjar et al. (2012) employed optimal control theory to determine the optimal production 

rates in a production system. Mezghiche et al. (2015) presented a unified production forecasting 

system using the control approach. In their proposed system, the demand rate over a given 

period depends on the demand rate of the previous period, and the stock level. Benkherouf et 

al. (2016) proposed an optimal control model for production and reworking in the inventory 

system with finite planning horizons. Dizbin and Tan (2020) considered the production control 

problem of a production-inventory system with correlated demand, inter-arrival, and processing 

times. They proved that the optimal control policy is the state-dependent threshold policy. Al-

Khazraji et al. (2021) scrutinized the dynamic performance of the APIOBPCS model and the 

newly modified 2APIOBPCS model for optimal control of production–inventory systems in 

their study. Öztürk (2021) investigated an economic production quantity model that explored 

the impacts of a flawed manufacturing process with stochastic breakdowns and inspection 

policies on a manufacturing inventory system with a repair, and determined the optimal 

production run time. 

Pooya and Pakdaman (2017) proposed an optimal control model for production-inventory 

models. They solved the proposed optimal control problem with a neural network approach. In 

most models discussed in the production field, it is assumed that production occurs in a single 

stage. They also (2018) proposed a delayed optimal control model for a multi-stage production-

inventory system with production lead times. Still, their planning approach was not MRP and 

merely managed the inventory of the various stages. In another article (2019), they proposed an 

optimal control model for finite capacity continuous MRP, which does not consider production 

lead time, including returned, reworked, and recycled goods with deteriorating items. Rachih et 

al. (2022) addressed a discrete inventory control model for a reverse logistics system in their 

paper. In their work, the optimal control policy consisted of minimal levels for stocks of returns 

and new products and higher levels for remanufactured products. In contrast, the demand for 

new products was higher than the demand for remanufactured products. Ignaciuk (2022) 

examined the perspectives of linear-quadratic (LQ) optimal control in steering the process of 

goods distribution in logistic systems with multiple transportation options. Megoze et al., 

(2022) presented a study on a manufacturing and remanufacturing system that degrades 

according to its production rate.  After formulating the optimal control problem that described 

the studied system, they solved the HJB equations using a numerical method. 

In many cases, production phasing and planning for each stage separately may be more 

desirable. Primarily, when using equipment and machinery in separate, sequential applications, 

https://doi.org/10.22067/jstinp.2025.94678.1164


 

 

 
 

      Miri et al., JSTINP 2025; Vol. 4. No. 3                                                             DOI: 10.22067/JSTINP.2025.94678.1164  78 

Designing an Optimal Control Model of Finite Capacity, Multi-stage Continuous MRP System                   JSTINP 

it is very cost-effective because it allows for flexibility in planning and reduces production costs 

with a more accurate schedule. However, multi-stage production systems still occur despite the 

production lead time, which neglect leads to incorrect planning and either increasing or 

decreasing inventory. On the other hand, considering that in such production systems, there is 

a possibility of defective goods after each stage, it is necessary to consider the return stage to 

rework the returned product or recycle it into the raw materials of the previous step. 

Table 1 provides a summary of the research conducted in the field of the present study. The 

earlier models each had deficiencies in the multi-stage continuous MRP system, considering 

the finite capacity, the delay in production lead time, and the possibility of re-working and 

recycling. Many of the previous papers have proposed discrete-time models.  

Grubbstrom et al. (2010) considered no capacity constraints. Ignaciuk and Bartoszewicz 

(2010) dismiss the disposal phase of deteriorating items. Sadeghian (2011) presented a 

continuous MRP model paper with no optimization approach. Louly et al. (2012) regarded lead 

time as a random variable. Vercraene and Gayon (2013) presented a two-stage model that 

ignored recycling. The proposed models did not apply to production systems, despite the 

industries' production nature being continuous, such as the petroleum and petrochemical 

industries, as well as some of the products in the construction industry. Benkherouf et al. (2016) 

presented a model that lacked a recycling stage. Pooya and Pakdaman (2018) did not consider 

the process of disposing of deteriorating items and reworking. In another paper (2019), they 

presented a model in which production LTs were considered as zero. Al-Khazraji et al. (2021) 

presented a continuous optimal control model that considered production lead time but did not 

account for the return, rework, and recycling stages. Öztürk (2021) proposed a delayed optimal 

control model with a reworking stage, but in the proposed model, the stages of recycling and 

disposal of perishable items were neglected. ElHafsi et al. (2021) and Gao (2022) proposed 

continuous models that do not account for production lead time. In their models, they dismiss 

the stage of disposal of deteriorating items. Shen et al. (2022) and Megoze et al., (2022) 

investigated the production-inventory problem with deteriorating items, where the production 

LTs were considered zero. Rachih et al. (2022) addressed a discrete inventory control model in 

their paper. Although they included the rework stage in the model, the production lead time was 

ignored. The challenge observed in earlier models is the lack of a comprehensive model to be 

proposed for a multi-stage continuous MRP system with finite capacity, considering production 

LTs with deteriorating items. 

Yan and Sun (2024) employ constrained reinforcement learning to solve an optimal control 

problem aimed at reducing fuel consumption in hybrid energy systems. By accounting for 

https://doi.org/10.22067/jstinp.2025.94678.1164
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uncertainty and fluctuations in input data (such as sensor errors or changes in environmental 

conditions) and integrating prediction with dynamic decision-making, they propose a multi-

stage framework that can be adapted to MRP systems with rework and recycling capabilities. 

Luo et al. (2024) focus on a model predictive control (MPC) approach to optimize computations 

in the presence of input delays. By predicting future states and solving the optimal control 

problem one step ahead, they significantly reduce delays in implementing controls. 

In this study, we introduce an optimal control multi-stage continuous MRP system with finite 

capacity, considering production LTs with deteriorating items. Purchase and manufacturing 

orders, shipments, and quantities returned from the market were considered control variables, 

while inventories were treated as system states. Production LTs are to be the time required for 

the production and purchase orders. In the proposed multi-stage system, it is permissible to 

move the returned items from one inventory to the previous one due to the recycling and 

reworking stages. An essential advantage of the proposed model, which was not addressed in 

previous models, is that the number of items sent to the next stage must be a coefficient of their 

use in the BOM as well as a coefficient of inventory. In other words, the number of goods 

shipped at any given moment in time should be large enough to be used in production at all 

times and not lead to a surplus inventory of any item at a later stage. The bottom line of Table 

1 shows the features of the present study. There are two main steps to be solved by the theory 

of optimal control: the modelling stage, or model description, and the model solving stage.  

The first section of this study is (Model Descriptions) devoted to modelling and model 

description. In this section, the proposed model and related diagrams are presented. Also, two 

mathematical models for the delay and non-delay modes are offered. In the second section 

(Model solving), the proposed linear-quadratic optimal control model is analyzed and solved. 

In the third section (numerical simulation), the proposed model is solved using the actual 

parameters studied. The fourth section (Sensitivity Analysis for Q , K and R ) is devoted to 

evaluating the proposed model. Finally, the last section (Discussion and Conclusion) includes 

a discussion of model features, conclusions, and future research suggestions.

https://doi.org/10.22067/jstinp.2025.94678.1164
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Table 1. Previous research on MRP mathematical models and challenges 
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Sadeghian (2011) MRP MRP       *  

Grubbstrom et al. (2010) MRP MRP *    *    

Rossi et al. (2017) MRP MRP *        

Milne et al. (2015) MRP MRP *        

Louly et al. (2012) MRP MRP *        

Grubbstrom and Tang (2012) MRP MRP *        

Le Thi and Tran (2014) MRP Integer nonlinear programming model *        

Hedjar et al. (2012) 
Optimal control applications in 

production planning and inventory control 
Continuous optimal control      *   

Dizbin and Tan (2020)  Continuous optimal control  *    * * * 

Mezghiche et al. (2015) " Continuous optimal control  *    *   

Pooya and Pakdaman (2017) " Continuous optimal control  *  *  *  * 

Pooya and Pakdaman (2018) " Continuous optimal control  *    *   

Pooya et al. (2019) " Continuous optimal control   *     * 

Pooya and Pakdaman (2019) " Continuous optimal control    *     

Singer and Khmelnitsky (2021)  Continuous optimal control  *  *  *  * 

Dhaiban (2022)  Continuous optimal control  *  * * * * * 

Dong et al. (2011) " 
Continuous optimal control 

, multi-stage 
       * 

Hatami-Marbini et al. (2020)  Continuous optimal control    *  * * * 

Benkherouf et al. (2016) " Continuous optimal control  *    *   

Vercraene and Gayon (2013) " Discrete optimal control, two-stage *     *  * 

Lee et al. (2021)  Continuous optimal control  *  *  *  * 

Ignaciuk and Bartoszewicz 

(2010) 
" 

Discrete optimal control 

, multi-stage 
*       * 

Khazraji et al. (2021)-Al " Continuous optimal control        * 
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Öztürk (2021) " Continuous optimal control  *  *   * * 

ElHafsi et al. (2021) " Continuous optimal control    *   * * 

Gao (2022) " Continuous optimal control    *   * * 

Shen et al. (2022) " Continuous optimal control    *   * * 

Rachih et al. (2022) " Discrete optimal control * *  *    * 

Megoze et al. (2022) " Continuous optimal control  *  *   * * 

Ignaciuk (2022) " Discrete optimal control *   *   * * 

Yan and Sun (2024) 
MRP: Optimal control applications in 

production planning and inventory control 

Continuous optimal control, multi-
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Luo et al., 2024 
Optimal control applications in production 
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Continuous optimal control, multi-stage * *   * *  * 
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2. Model descriptions 

The proposed model in this study will be a multi-stage production-inventory planning model 

that involves returning, recycling, and reworking the returned products. Since the proposed 

model will consider the production lead time in each stage, two models are presented. In the 

first model, the production lead time will be zero, and in the second model, the actual lead time 

will be considered at each stage of production. The intended production-inventory system 

produces a final product called A. In the first stage of the model, two raw materials (𝑏 and 𝑐) 

will be bought and assembled. Then, the work in process (𝐴1) will be produced. In the second 

stage, the work in process will be mixed with the raw material (d), and the final item (A) will 

be produced. To produce each unit of (𝐴1), we need 𝛼 unit of 𝑏 and 𝛽 unit of 𝑐. In the next 

stage, to make each unit of A, we need 𝛿 unit of 𝐴1 and 𝛾 unit of 𝑑 (figure 1). 

 
  Figure 1. product three-level tree 

  Pooya and Pakdaman (2019) presented an MRP optimal control model for finite capacity 

without considering the lead time. In another article (2018), they offered a multi-stage model 

considering production lead time. The proposed model in this study combines these two models. 

The multi-stage production-inventory system shown in Figure 2 is a continuous MRP model, 

including the stages of recycling and reworking on returned items. In this model, the disposal 

stage of deteriorating items is also considered. In the proposed model above, the first step is 

ordering the raw materials (𝑏 and 𝑐), which is shown with 𝑠𝑚𝑏(𝑡) and 𝑠𝑚𝑐(𝑡), respectively. The 

amount of these two raw materials in the unit of time also equals to 𝐼𝑚𝑏(𝑡) and 𝐼𝑚𝑐(𝑡). Next, 

by combining the two raw materials, the work in process (𝐴1) is produced. The amount of 

shipment of the above items for production equals to 𝑃𝑚𝑏(𝑡) and 𝑃𝑚𝑐(𝑡), respectively. The first 

stage inventory (𝐼𝑚𝐴1(𝑡)) will be divided into two parts. Part of the inventory will be sent to the 

next stage (𝑃𝑚𝐴1(𝑡)) for 𝐴 production and the other part will be returned at a 𝜔𝑚1 rate. Some 

of the returned goods will be shipped to the remanufacturing or reworking stage at a 𝜔𝑅𝐴1rate 

and some will be referred to the recycling stage at a 𝜔𝐶𝐴1 rate (from the inventory of recycled 

goods, the part related to the raw material 𝑏 (𝐶𝑟𝑏(𝑡))will be added to the inventory of 𝑏 and part 

related to the raw material (𝑐) will be added  to the inventory of 𝑐). 

https://doi.org/10.22067/jstinp.2025.94678.1164
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 Figure 2. Diagram of the proposed model
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 The remaining items at this stage that cannot be reworked or recycled will be disposed of at 

a 𝜔𝑑𝐴1rate. In the second stage of production, the inventory of manufactured goods (𝐼𝑚𝐴(𝑡)) 

will be divided into two parts. Part of the inventory will be shipped to the market based on the 

market demand (𝐷 (𝑡)) (that 𝑃𝑚𝐴 (𝑡) = 𝐷(𝑡)) and the remainder will constitute returned goods 

at the rate (𝜔𝑅𝐴 ) and returned goods, similar to the preceding two-stage, will be added to the 

remanufacturing (𝜔𝑑𝐴 ) or recycling stage (at the rate 𝜔𝐶𝐴 ) and some of them will be disposed 

of at the 𝜔𝑑𝐴 rate. Some of the shipped goods will also be returned to the market (𝑅 (𝑡)) which 

will be added to the second stage returned goods inventory. 

The variables and parameters used in the model will be as follows. These symbols are used 

throughout the article for state and control variables. 

State and control variables 

𝐼𝑚𝑏(𝑡): Inventory of ordered items b at time t  

𝐼𝑚𝑐(𝑡): Inventory of ordered items c  at time t  

𝐼𝑚𝑑(𝑡): Inventory of ordered items d at time t  

𝐼𝑚𝐴1(𝑡): Inventory of ordered items 𝐴1 at time t  

𝐼𝑚𝐴(𝑡): Inventory of manufactured final production A at time t  

𝐼𝑅𝐴1(𝑡): Inventory of returned items 𝐴1 at time t  

𝐼𝑅𝐴(𝑡): Inventory of returned final production A at time t  

Control variables 

𝑠𝑚𝑏(𝑡): Level of ordering and releasing the items 𝑏 at time 𝑡  
𝑠𝑚𝑐(𝑡): Level of ordering and releasing the items 𝐶 at time 𝑡 
𝑠𝑚𝑑(𝑡): Level of ordering and releasing the items 𝑑 at time 𝑡 
𝑠𝑚𝐴1(𝑡): Level of ordering and releasing the WIP items 𝐴1at time 𝑡 

𝑠𝑚𝐴(𝑡): Level of ordering and releasing the final production 𝐴 at time 𝑡 
𝑃𝑚𝑏(𝑡): Level of items b  which will be transmitted for producing 𝐴1at time 𝑡   
𝑃𝑚𝑐(𝑡): Level of items c  which will be transmitted for producing 𝐴1at time 𝑡  
𝑃𝑚𝑑(𝑡): Level of items d  which will be transmitted for producing 𝐴 at time t  

𝑃𝑚𝐴1(𝑡): Level of WIP items 𝐴1 which will be transmitted for producing 𝐴 at time 𝑡    

𝑃𝑚𝐴(𝑡): Level of manufactured and released items A at time t  

 𝐶𝑟𝑏(𝑡): Level of recycled items 𝑏 at  time 𝑡    
𝐶𝑟𝑐(𝑡): Level of recycled items  𝑐 at  time 𝑡    
𝐶𝑟𝑑(𝑡): Level of recycled items 𝑑 at time 𝑡    
𝐶𝑟𝐴1(𝑡): Level of recycled WIP items 𝐴1 at time 𝑡    

𝐷 (𝑡): Released demand of manufactured items 𝐴 at time 𝑡    
𝑅 (𝑡): Level of returned items A from market at time 𝑡    

Parameters 

𝜔𝑚1: Rate of returning in the stock of manufactured WIP items 𝐴1 

  𝜔𝑚2:Rate of returning in the stock of manufactured final production 𝐴 

𝜔𝑅𝐴1: Rate of reworking in the stock of returned WIP items 𝐴1 
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𝜔𝑅𝐴: Rate of reworking in the stock of returned final production  𝐴 

𝜔𝐶𝐴1: Rate of recycling in the stock of returned WIP items 𝐴1 

𝜔𝐶𝐴: Rate of recycling in the stock of returned final production 𝐴 

𝜔𝑑𝐴1: Deterioration rate in the stock of reworked WIP items  𝐴1 

𝜔𝑑𝐴:Deterioration rate in the stock of reworked final production 𝐴 

 𝛼: Number of items 𝑏 which will be used for producing 𝐴1 

𝛽: Number of items c which will be used for producing 𝐴1 

𝛾 :Number of items  𝑑 which will be used for producing 𝐴 

𝛿: Number of item  𝐴1which will be used for producing 𝐴  

𝜏𝐴1: Production Lead Time for WIP items 𝐴1  

𝜏𝐴: Production Lead Time for final production 𝐴  

 The number of shipped items ( 𝑏 and 𝑐) should be a coefficient of their use in the BOM as 

otherwise, the amount of raw material shipped for production 𝐴1would be excessive. This 

coefficient is defined 𝑎. In other words, the number of goods shipped at any time should be 

such that they are all used for production  𝐴1 and there is no additional shipment of any of them. 

It should also be a coefficient on the amount of inventory available at any given time. So, it can 

be stated:  

{
𝑃𝑚𝑏(𝑡) = 𝑎𝛼𝐼𝑚𝑏(𝑡)

𝑃𝑚𝑐(𝑡) = 𝑎𝛽𝐼𝑚𝑐(𝑡)
 (1) 

 But given that the number of items shipped at any time should be less than the number of 

goods above, so it should be 0 < 𝑎𝛼, 𝑎𝛽 ≤ 1. 

The order of manufactured item (𝐴1) at any given time is obtained from the following 

relationship:  

𝑠𝑚𝐴1(𝑡) = 𝑚𝑖𝑛 {
𝑃𝑚𝑏(𝑡)

𝛼
,
𝑃𝑚𝑐(𝑡)

𝛽
}                 (2) 

In order not to ship items  𝑏 and 𝑐 in production  𝐴1 more than the production need, it should 

be:  

 
𝑃𝑚𝑏(𝑡)

𝛼
=

𝑃𝑚𝑐(𝑡)

𝛽
                   (3) 

 So it can be stated:  

 𝑠𝑚𝐴1(𝑡)min {
𝑃𝑚𝑏(𝑡)

𝛼
,
𝑃𝑚𝑐(𝑡)

𝛽
} =

𝑃𝑚𝑏(𝑡)

𝛼
=

𝑃𝑚𝑐(𝑡)

𝛽
     (4) 

According to the relationships (1):  

 {
𝑃𝑚𝑏(𝑡) = 𝑎𝛼𝐼𝑚𝑏(𝑡) ⟹

𝑃𝑚𝑏(𝑡)

𝛼
= 𝑎𝐼𝑚𝑏(𝑡)

𝑃𝑚𝑐(𝑡) = 𝑎𝛽𝐼𝑚𝑐(𝑡) ⟹
𝑃𝑚𝑐(𝑡)

𝛽
= 𝑎𝐼𝑚𝑐(𝑡)

              (5) 

 

https://doi.org/10.22067/jstinp.2025.94678.1164


 

 

 
 

      Miri et al., JSTINP 2025; Vol. 4. No. 3                                                             DOI: 10.22067/JSTINP.2025.94678.1164  86 

Designing an Optimal Control Model of Finite Capacity, Multi-stage Continuous MRP System                   JSTINP 

According to the relationship (3):  

  𝑎𝐼𝑚𝑏(𝑡) = 𝑎𝐼𝑚𝑐(𝑡) ⟹ 𝐼𝑚𝑏(𝑡) = 𝐼𝑚𝑐(𝑡)                  (6) 

 In the next stage, the manufactured product will be transformed into the final product (𝐴) by 

mixing the raw material (𝑑). At this point, the shipping rate of the above items is equal to 

𝑃𝑚𝑑(𝑡) and 𝑃𝑚𝐴1(𝑡), respectively. Similar to the one described in the previous stage, we can 

conclude the following relationships (here the coefficient  𝑏́ is defined): 

𝑃𝑚𝑑(𝑡) = 𝑏́𝛾𝐼𝑚𝑑(𝑡) 

𝑃𝑚𝐴1(𝑡) = 𝑏́𝛿𝐼𝑚𝐴1(𝑡) 
             (7) 

In which 0 < 𝑏́𝛾, 𝑏́𝛿 ≤ 1. 

At this point, the manufactured product order 𝐴 must follow the following relationship at all 

times.  

𝑠𝑚𝐴(𝑡) = min
𝑃𝑚𝑑(𝑡)

𝛾
,
𝑃𝑚𝐴1(𝑡)

𝛿
            (8) 

 In order not to ship items 𝑑 and 𝐴1 in production 𝐴 more than the production need, it should 

be:  

𝑃𝑚𝑑(𝑡)

𝛾
=
𝑃𝑚𝐴1(𝑡)

𝛿
             (9) 

 And according to the relationships (9) and similar to the above, it can be stated: 

 𝐼𝑚𝐴1(𝑡) = 𝐼𝑚𝑑(𝑡)  

By placing relationships (3) and (9) in relationships (2) and (8), the following relationships 

will be achieved: 

{
 
 

 
 𝑠𝑚𝐴1(𝑡) = min {

𝑃𝑚𝑑(𝑡)

𝛼
,
𝑃𝑚𝑐(𝑡)

𝛽
} =

𝑃𝑚𝑑(𝑡)

𝛼
=
𝑃𝑚𝑐(𝑡)

𝛽
=
1

2𝛼
𝑃𝑚𝑏(𝑡) +

1

2𝛽
𝑃𝑚𝑐(𝑡)

𝑠𝑚𝐴(𝑡) = min {
𝑃𝑚𝑑(𝑡)

𝛾
,
𝑃𝑚𝐴1(𝑡)

𝛿
} =

𝑃𝑚𝑑(𝑡)

𝛾
=
𝑃𝑚𝐴1(𝑡)

𝛿
=
1

2𝛾
𝑃𝑚𝑏(𝑡) +

1

2𝛾
𝑃𝑚𝐴1(𝑡)

 (10) 

And according to Figure 2,and recycling and detriration rates it can be stated: 

{
 
 

 
 
𝐶𝑟𝑏(𝑡) = 𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡)

𝐶𝑟𝐶(𝑡) = 𝛽𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡)

𝐶𝑟𝑑(𝑡) = 𝛾𝜔𝐶𝐴2𝐼𝑅𝐴(𝑡)

𝐶𝑟𝐴1(𝑡) = 𝛿𝜔𝐶𝐴2𝐼𝑅𝐴(𝑡)

 

{
𝑃𝑑𝐴1(𝑡) = 𝜔𝑑𝐴1𝐼𝑅𝐴1(𝑡) 

𝑃𝑑𝐴(𝑡) = 𝜔𝑑𝐴𝐼𝑅𝐴(𝑡)      
           

                                           

 

        (11) 
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2.1. Model one: The mode without considering the lead time 

The dynamic behavior of the above-proposed model can be expressed in terms of the following 

relationships: 

{
 
 
 
 

 
 
 
 
𝐼𝑚𝑏(𝑡) = 𝑠𝑚𝑏(𝑡) + 𝐶𝑟𝑏(𝑡) − 𝑃𝑚𝑏(𝑡)                                                                𝐼𝑚𝑏(0) = 𝐼𝑚𝑏

0       

𝐼𝑚𝑐(𝑡) = 𝑠𝑚𝑐(𝑡) + 𝐶𝑟𝑐(𝑡) − 𝑃𝑚𝑐(𝑡)                                                                 𝐼𝑚𝑐(0) = 𝐼𝑚𝑐
0         

𝐼𝑚𝐴1(𝑡) = 𝑠𝑚𝐴1(𝑡) + 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) + 𝐶𝑟𝐴1(𝑡) − 𝑃𝑚𝐴1(𝑡)−𝜔𝑚1
𝐼𝑚𝐴1(𝑡)  𝐼𝑚𝐴1(0) = 𝐼𝑚𝐴1    

0

𝐼𝑚𝑑(𝑡) = 𝑠𝑚𝑑(𝑡) + 𝐶𝑟𝑑(𝑡) − 𝑃𝑚𝑑(𝑡)                                                               𝐼𝑚𝑑(0) = 𝐼𝑚𝑑
0        

𝐼𝑚𝐴(𝑡) = 𝑠𝑚𝐴(𝑡) + 𝜔𝑅𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴(𝑡)−𝜔𝑚2
𝐼𝑚𝐴(𝑡)                               𝐼𝑚𝐴(0) = 𝐼𝑚𝐴

0         

𝐼𝑅𝐴1(𝑡) = 𝜔𝑚1
𝐼𝑚𝐴1(𝑡) − 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑑𝐴1(𝑡)           𝐼𝑅𝐴1(0) = 𝐼𝑅𝐴1   

0      

𝐼𝑅𝐴(𝑡) = 𝜔𝑚2
𝐼𝑚𝐴(𝑡) + 𝑅(𝑡) − 𝜔𝑅𝐴2𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴2𝐼𝑅𝐴(𝑡) − 𝑃𝑑𝐴(𝑡)    𝐼𝑅𝐴(0) = 𝐼𝑅𝐴

0            

 (12) 

By placing the relationships category (10) and (11) into the relationship category (12), the 

following relationships are obtained: 

{
 
 
 
 
 

 
 
 
 
 
𝐼𝑚𝑏(𝑡) = 𝑠𝑚𝑏(𝑡) + 𝛼𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑏(𝑡)                                                                                            𝐼𝑚𝑏(0) = 𝐼𝑚𝑏

0   

𝐼𝑚𝑐(𝑡) = 𝑠𝑚𝑐(𝑡) + 𝛽𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑐(𝑡)                                                                                             𝐼𝑚𝑐(0) = 𝐼𝑚𝑐
0     

𝐼𝑚𝐴1(𝑡) =  
1

2𝛼
𝑃𝑚𝑏(𝑡) +

1

2𝛽
𝑃𝑚𝑐(𝑡) + 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) + 𝛾𝜔𝐶𝐴2𝐼𝑅𝐴2(𝑡) − 𝑃𝑚𝐴1(𝑡)−𝜔𝑚1

𝐼𝑚𝐴1(𝑡)   𝐼𝑚𝐴1(0) = 𝐼𝑚𝐴1 
0

𝐼𝑚𝑑(𝑡) = 𝑠𝑚𝑑(𝑡) + 𝛾𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝑑(𝑡)                                                                                              𝐼𝑚𝑑(0) = 𝐼𝑚𝑑
0      

𝐼𝑚𝐴(𝑡) =
1

2𝛾
𝑃𝑚𝑑(𝑡) +

1

2𝛿
𝑃𝑚𝐴1(𝑡) + 𝜔𝑅𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴(𝑡)−𝜔𝑚2

𝐼𝑚𝐴(𝑡)                                       𝐼𝑚𝐴(0) = 𝐼𝑚𝐴
0       

𝐼𝑅𝐴1(𝑡) = 𝜔𝑚1
𝐼𝑚𝐴1(𝑡) − 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝑑𝐴1𝐼𝑅𝐴1(𝑡)                                           𝐼𝑅𝐴1(0) = 𝐼𝑅𝐴1   

0    

𝐼𝑅𝐴(𝑡) = 𝜔𝑚2
𝐼𝑚𝐴(𝑡) + 𝑅(𝑡) − 𝜔𝑅𝐴𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝜔𝑑𝐴𝐼𝑅𝐴(𝑡)                                         𝐼𝑅𝐴(0) = 𝐼𝑅𝐴

0          

 (13) 

Column matrices (𝑥 ̃(𝑡)and 𝑢 ̃(𝑡)) including state and control variables are defined as follows: 

𝑥 ̃(𝑡) = [𝐼𝑚𝑏(𝑡) 𝐼𝑚𝑐(𝑡) 𝐼𝑚𝐴1(𝑡) 𝐼𝑚𝑑(𝑡) 𝐼𝑚𝐴(𝑡) 𝐼𝑅𝐴1(𝑡) 𝐼𝑅𝐴(𝑡)]
𝑇
 

𝑢 ̃(𝑡) = [𝑠𝑚𝑏(𝑡) 𝑠𝑚𝑐(𝑡)  𝑠𝑚𝑑(𝑡) 𝑃𝑚𝑏(𝑡) 𝑃𝑚𝑐(𝑡) 𝑃𝑚𝐴1(𝑡) 𝑃𝑚𝑑(𝑡) 𝑃𝑚𝐴(𝑡) 𝑅(𝑡)]
𝑇
 

 The matrix  𝐴 whose entries form the coefficients of state variables in the relationships 

category (13), is defined as follows: 

 







































)(020000

0)
111

(00100

020000

000000
1

00100

0
1

00000

0
1

00000

dACARAm

dACARAm

RAm

CA

CARAm

CA

CA

A















 

  

https://doi.org/10.22067/jstinp.2025.94678.1164


 

 

 
 

      Miri et al., JSTINP 2025; Vol. 4. No. 3                                                             DOI: 10.22067/JSTINP.2025.94678.1164  88 

Designing an Optimal Control Model of Finite Capacity, Multi-stage Continuous MRP System                   JSTINP 

And the matrix  𝐵 whose entries form the coefficients of control variables in the relationships 

category (13), is defined as follows: 











































100000000

000000000

01
2

1

2

1
00000

001000100

0001
2

1

2

1
000

000010010

000001001




B

 

According to 𝐴 and  𝐵 matrices, it could  be stated: 

 
 𝑥̃ ̇ (𝑡) = 𝐴𝑥̃(𝑡) + 𝐵𝑢̃(𝑡),    𝑥̃(0)𝑥̃0 (14) 

To obtain the target values of the state and control variables, the relationship is defined as 

follows:  

∆𝑓 (𝑡) = 𝑓(𝑡) − 𝑓 ̂(𝑡) (15) 

Where 𝑓 is the control or state variable and 𝑓 ̂is the target value of 𝑓. So we define  𝑥(𝑡) and  

𝑢(𝑡) matrices as: 

𝑥(𝑡) = [∆𝐼𝑚𝑏(𝑡)  ∆𝐼𝑚𝑐(𝑡)  ∆𝐼𝑚𝐴1(𝑡) ∆𝐼𝑚𝑑(𝑡)  ∆𝐼𝑚𝐴(𝑡)  ∆𝐼𝑅𝐴1(𝑡) ∆𝐼𝑅𝐴(𝑡)]
𝑇 

𝑢(𝑡) = [∆𝑠𝑚𝑏(𝑡)  ∆𝑠𝑚𝑐(𝑡)  ∆𝑠𝑚𝑑(𝑡)  ∆𝑃𝑚𝑏(𝑡)  ∆𝑃𝑚𝑐(𝑡)  ∆𝑃𝑚𝐴1  ∆𝑃𝑚𝑑(𝑡)  ∆𝑃𝑚𝐴(𝑡)  ∆𝑅(𝑡)]
𝑇

 
The goals for the state and control variables are the constraints that apply to these variables 

in the model. The purpose of producing, remanufacturing, or recycling items is the finite 

capacity for which the workstation is intended, and the purpose of inventories is the finite 

capacity that should be considered for warehouses. Therefore, when the objective function is a 

minimization type of ∆𝑓𝑖, the objective function is actually to converge between the control and 

the state variables with their target values. 

Now, considering the above explanation and the set of equations (13), the problem of linear 

binomial optimal control with finite time is defined as follows: 

𝑚𝑖𝑛 𝑘1(∆𝐼𝑚𝑏(𝑇))
2 + 𝑘2(∆𝐼𝑚𝑐(𝑇))

2 + 𝑘3(∆𝐼𝑚𝐴1(𝑇))
2 + 𝑘4(∆𝐼𝑚𝑑(𝑇))

2 + 𝑘5(∆𝐼𝑚𝐴(𝑇))
2

+ 𝑘6(∆𝐼𝑅𝐴1(𝑇))
2 + 𝑘7(∆𝐼𝑅𝐴(𝑇))

2 

∫ [𝑞1

𝑇

0

(∆𝐼𝑚𝑏(𝑡))
2
+ 𝑞

2(∆𝐼𝑚𝑐(𝑡))
2 + 𝑞3 (∆𝐼𝑚𝐴1(𝑡))

2
+ 𝑞4(∆𝐼𝑚𝑑(𝑡))

2
+ 𝑞5(∆𝐼𝑚𝐴(𝑡))

2

+ 𝑞6 (∆𝐼𝑅𝐴1(𝑡))
2
+ 𝑞7(∆𝐼𝑅𝐴(𝑡))

2
+ 𝑟1∆𝑠𝑚𝑏(𝑡) + 𝑟2∆𝑠𝑚𝑐(𝑡) + 𝑟3∆𝑠𝑚𝑑(𝑡)

+ 𝑟4∆𝑃𝑚𝑏(𝑡) + 𝑟5∆𝑃𝑚𝑐(𝑡) + 𝑟6∆𝑃𝑚𝐴1(𝑡) + 𝑟7∆𝑃𝑚𝑑(𝑡) + 𝑟8∆𝑃𝑚𝐴(𝑡) + 𝑟9∆𝑅(𝑡)]𝑑𝑡 
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𝑆𝑡. (16) 
 

Where 𝑘𝑖 and 𝑞𝑖 (𝑖 = (1,2, … ,7)) and also 𝑟𝑖  (𝑗 = (1,2, … ,11))  are non-negative real 

numbers that are considered as penalty coefficients of the deviation of the variables from their 

target values. 

As is known, the matrix entries 𝐴 and 𝐵 are coefficients of the state and control variables of 

the model constraints (16). 

2.2. Model two: The mode with considering the lead time 

In this model, the lead time is considered in each stage of production. Therefore, the 

production lead time for the work in process (𝐴1)   is 𝜏𝐴1 and for Product  𝐴 is defined as 𝜏𝐴. 

𝐼𝑚𝐴1(𝑡) = 𝑎𝛼
2𝐼𝑚𝑏(𝑡 − 𝜏𝐴1) + 𝑎𝛽

2𝐼𝑚𝑐(𝑡 − 𝜏𝐴1) + 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) + 𝛿𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴1(𝑡)

− 𝜔𝑚1
𝐼𝑚𝐴1(𝑡)     𝐼𝑚𝐴1(0) = 𝐼𝑚𝐴1 

0  
(17) 

The following relationship will be obtained considering the lead time for the product 𝐴: 

𝐼𝑚̇𝐴(𝑡) =
𝑏́

2
𝐼𝑚𝑑(𝑡 − 𝜏𝐴) +

𝑏́

2
𝐼𝑚𝐴1(𝑡 − 𝜏𝐴) + 𝜔𝑅𝐴𝐼𝑅𝐴(𝑡)

− 𝑃𝑚𝐴(𝑡)−𝜔𝑚2
𝐼𝑚𝐴(𝑡)                                       𝐼𝑚𝐴(0) = 𝐼𝑚𝐴

0  
(18) 

Since the above two equations are a linear system of delayed differential equations, we will 

have the equation (13) using Taylor expansion as follows:  

{
 
 
 
 
 

 
 
 
 
 

∆̇𝐼𝑚𝑏(𝑡) = ∆𝑠𝑚𝑏(𝑡) + 𝛼𝜔𝐶𝐴1∆𝐼𝑅𝐴1(𝑡) − ∆𝑃𝑚𝑏(𝑡)                                                                                            ∆𝐼𝑚𝑏(0) = ∆𝐼𝑚𝑏
0   

∆̇𝐼𝑚𝑐(𝑡) = ∆𝑠𝑚𝑐(𝑡) + 𝛽𝜔𝐶𝐴1∆𝐼𝑅𝐴1(𝑡) − ∆𝑃𝑚𝑐(𝑡)                                                                                             ∆𝐼𝑚𝑐(0) = ∆𝐼𝑚𝑐
0     

∆̇𝐼𝑚𝐴1(𝑡) =  
1

2𝛼
∆𝑃𝑚𝑏(𝑡) +

1

2𝛽
∆𝑃𝑚𝑐(𝑡) + 𝜔𝑅𝐴1∆𝐼𝑅𝐴1(𝑡) +  𝛿𝜔𝐶𝐴2∆𝐼𝑅𝐴2(𝑡) − ∆𝑃𝑚𝐴1(𝑡)−𝜔𝑚1

∆𝐼𝑚𝐴1(𝑡)   ∆𝐼𝑚𝐴1(0) = ∆𝐼𝑚𝐴1 
0

∆̇𝐼𝑚𝑑(𝑡) = ∆𝑠𝑚𝑑(𝑡) + 𝛾𝜔𝐶𝐴∆𝐼𝑅𝐴(𝑡) − ∆𝑃𝑚𝑑(𝑡)                                                                                              ∆𝐼𝑚𝑑(0) = ∆𝐼𝑚𝑑
0      

∆̇𝐼𝑚𝐴(𝑡) =
1

2𝛾
∆𝑃𝑚𝑑(𝑡) +

1

2𝛿
∆𝑃𝑚𝐴1(𝑡) + 𝜔𝑅𝐴∆𝐼𝑅𝐴(𝑡) − ∆𝑃𝑚𝐴(𝑡)−𝜔𝑚2

∆𝐼𝑚𝐴(𝑡)                                       ∆𝐼𝑚𝐴(0) = ∆𝐼𝑚𝐴
0       

∆̇𝐼𝑅𝐴1(𝑡) = 𝜔𝑚1
∆𝐼𝑚𝐴1(𝑡) − 𝜔𝑅𝐴1∆𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴1∆𝐼𝑅𝐴1(𝑡) − 𝜔𝑑𝐴1∆𝐼𝑅𝐴1(𝑡)                                           ∆𝐼𝑅𝐴1(0) = ∆𝐼𝑅𝐴1   

0    

∆̇𝐼𝑅𝐴(𝑡) = 𝜔𝑚2
∆𝐼𝑚𝐴(𝑡) + ∆𝑅(𝑡) − 𝜔𝑅𝐴∆𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴∆𝐼𝑅𝐴(𝑡) − 𝜔𝑑𝐴∆𝐼𝑅𝐴(𝑡)                                         ∆𝐼𝑅𝐴(0) = ∆𝐼𝑅𝐴

0          

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐼𝑚̇𝑏(𝑡) = 𝑠𝑚𝑏(𝑡) + 𝛼𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑏(𝑡)       𝐼𝑚𝑏(0) = 𝐼𝑚𝑏
0                                                                                       

𝐼𝑚̇𝑐(𝑡) = 𝑠𝑚𝑐(𝑡) + 𝛽𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑐(𝑡)           𝐼𝑚𝑐(0) = 𝐼𝑚𝑐
0                                                                                        

𝐼𝑚̇𝐴1(𝑡) = 𝑎𝛼
2(𝐼𝑚𝑏(𝑡) − 𝜏𝐴1𝐼𝑚̇𝑏(𝑡)) + 𝑎𝛽

2 (𝐼𝑚𝑐(𝑡) − 𝜏𝐴1𝐼𝑚̇𝑐(𝑡)) + 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) + 𝛿𝜔𝐶𝐴𝐼𝑅𝐴(𝑡)                            

−𝑃𝑚𝐴1(𝑡) − 𝜔𝑚1
𝐼𝑚𝐴1(𝑡)        𝐼𝑚𝐴1(0) = 𝐼𝑚𝐴1 

0                                                                                                                             
 

𝐼𝑚̇𝑑(𝑡) = 𝑠𝑚𝑑(𝑡) + 𝛾𝜔𝐶𝐴∆𝐼𝑅𝐴(𝑡) − 𝑏𝛾𝐼𝑚𝑑(𝑡)        𝐼𝑚𝑑(0) = 𝐼𝑚𝑑
0                                                                                          

𝐼𝑚̇𝐴(𝑡) =
𝑏́

2
(𝐼𝑚𝑑(𝑡) − 𝜏𝐴𝐼𝑚̇𝑑(𝑡)) +

𝑏́

2
(𝐼𝑚𝐴1(𝑡) − 𝜏𝐴𝐼𝑚̇𝐴1(𝑡)) + 𝜔𝑅𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴(𝑡)−𝜔𝑚2

𝐼𝑚𝐴(𝑡)    𝐼𝑚𝐴(0) = 𝐼𝑚𝐴
0

𝐼𝑅̇𝐴1(𝑡) = 𝜔𝑚1
∆𝐼𝑚𝐴1(𝑡) − 𝜔𝑅𝐴1∆𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝑑𝐴1∆𝐼𝑅𝐴1(𝑡)        𝐼𝑅𝐴1(0) = 𝐼𝑅𝐴1   

0                                     

𝐼𝑅̇𝐴(𝑡) = 𝜔𝑚2
𝐼𝑚𝐴(𝑡) + 𝑅(𝑡) − 𝜔𝑅𝐴𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝜔𝑑𝐴𝐼𝑅𝐴(𝑡)       𝐼𝑅𝐴(0) = 𝐼𝑅𝐴

0                                                   

 
(19) 
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The above equation will be converted as follows after simplification, by placing the first an

d second equations in the third equation: 

𝐼𝑚̇𝐴1(𝑡) = (𝑎𝛼
2 + 𝜏𝐴1𝑎

2𝛼3)𝐼𝑚𝑏(𝑡) − 𝑎𝛼
2𝜏𝐴1(𝑠𝑚𝑏(𝑡) + (−𝜏𝐴1𝑎𝛼

3𝜔𝐶𝐴1 − 𝑎𝛽
3𝜏𝐴1𝜔𝐶𝐴1

+𝜔𝑅𝐴1)𝐼𝑅𝐴1(𝑡) + (𝑎𝛽
2

+ 𝜏𝐴1𝑎
2𝛽3)𝐼𝑚𝑐(𝑡) − 𝜏𝐴1𝑎𝛽

2(𝑠𝑚𝑐(𝑡) + 𝛿𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴1(𝑡)

− 𝜔𝑚1𝐼𝑚𝐴1(𝑡)     𝐼𝑚𝐴1(0) =  𝐼𝑚𝐴1
0    

(20) 

And putting the equation (20) and the fourth equation of the equation group (19) in the fifth 

equation will transform the above equation as follows after simplification: 

𝐼𝑚̇𝐴(𝑡) = (
𝑏́

2
−
𝑏́2

2
𝛾𝜏𝐴) 𝐼𝑚𝑑(𝑡) −

𝑏́

2
𝜏𝐴𝑠𝑚𝑑(𝑡) + (

𝑏́

2
𝛾𝜔𝐶𝐴𝜏𝐴 −

𝑏́

2
𝜏𝐴𝛿𝜔𝐶𝐴 +𝜔𝑅𝐴) 𝐼𝑅𝐴(𝑡)

+ (
𝑏́

2
+
𝑏́2

2
𝜏𝐴𝜔𝑚1

) 𝐼𝑚𝐴1(𝑡) −
𝑏́

2
𝜏𝐴(𝑎𝛼

2 + 𝜏𝐴1𝑎
2𝛼3)𝐼𝑚𝑏(𝑡)

+
𝑏́

2
𝜏𝐴𝑎𝛼

2𝜏𝐴1𝑠𝑚𝑏(𝑡) +
𝑏́

2
𝜏𝐴(𝜏𝐴1𝑎𝛼

3𝜔𝐶𝐴1 + 𝑎𝛽
3𝜏𝐴1𝜔𝐶𝐴1 −𝜔𝑅𝐴1)𝐼𝑅𝐴1(𝑡)

−
𝑏́

2
𝜏𝐴( 𝑎𝛽

2 + 𝜏𝐴1  𝑎
2𝛽3 )𝐼𝑚𝐶(𝑡) +

𝑏́

2
𝑎𝛽2𝜏𝐴𝜏𝐴1𝑠𝑚𝐶(𝑡) +

𝑏́

2
𝜏𝐴 𝑃𝑚𝐴1(𝑡)

− 𝑃𝑚𝐴(𝑡) − 𝜔𝑚2
 𝐼𝑚𝐴(𝑡)        𝐼𝑚𝐴(0) = 𝐼𝑚𝐴

0  

(21) 

Therefore, by placing equations (20) and (21), the equation groups (19) will be as follows: 

 

The column matrices (𝑥̃(𝑡)and 𝑢̃(𝑡)), which include the state and control variables, are 

defined as follows: 

𝑥̃(𝑡) = [𝐼𝑚𝑏(𝑡)  𝐼𝑚𝑐(𝑡)  𝐼𝑚𝐴1(𝑡) 𝐼𝑚𝑑(𝑡)  𝐼𝑚𝐴(𝑡)  𝐼𝑅𝐴1(𝑡) 𝐼𝑅𝐴(𝑡)]
𝑇
 

𝑢̃(𝑡) = [𝑠𝑚𝑏(𝑡)  𝑠𝑚𝑐(𝑡)  𝑠𝑚𝑑(𝑡)  𝑃𝑚𝑏(𝑡)  𝑃𝑚𝑐(𝑡)  𝑃𝑚𝐴1  𝑃𝑚𝑑(𝑡)  𝑃𝑚𝐴(𝑡)  𝑅(𝑡)]
𝑇

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝐼𝑚̇𝑏(𝑡) = 𝑠𝑚𝑏(𝑡) + 𝛼𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑏(𝑡)       𝐼𝑚𝑏(0) = 𝐼𝑚𝑏

0                                                                                       

𝐼𝑚̇𝑐(𝑡) = 𝑠𝑚𝑐(𝑡) + 𝛽𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝑃𝑚𝑐(𝑡)           𝐼𝑚𝑐(0) = 𝐼𝑚𝑐
0                                                                                        

𝐼𝑚̇𝐴1(𝑡) =   (𝑎𝛼
2 + 𝜏𝐴1𝑎

2𝛼3)𝐼𝑚𝑏(𝑡) − 𝑎𝛼
2𝜏𝐴1𝑠𝑚𝑏(𝑡) + (−𝜏𝐴1𝑎𝛼

3𝜔𝐶𝐴1 − 𝑎𝛽
3𝜏𝐴1𝜔𝐶𝐴1 +𝜔𝑅𝐴1)𝐼𝑅𝐴1(𝑡)            

+(𝑎𝛽2 + 𝜏𝐴1𝑎
2𝛽3)𝐼𝑚𝑐(𝑡) − 𝑎𝛽

2𝜏𝐴1𝑠𝑚𝑐(𝑡) + 𝛿𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝐴1(𝑡) − 𝜔𝑚1𝐼𝑚𝐴1(𝑡)                                                
 

𝐼𝑚̇𝑑(𝑡) = 𝑠𝑚𝑑(𝑡) + 𝛾𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝑃𝑚𝑑(𝑡)        𝐼𝑚𝑑(0) = 𝐼𝑚𝑑
0                                                                                            

𝐼𝑚̇𝐴(𝑡) = (
𝑏́

2
−
𝑏́2

2
𝛾𝜏𝐴) 𝐼𝑚𝑑(𝑡) −

𝑏́

2
𝜏𝐴𝑠𝑚𝑑(𝑡) + (

𝑏́

2
𝛾𝜔𝐶𝐴𝜏𝐴 −

𝑏́

2
𝜏𝐴𝛿𝜔𝐶𝐴 +𝜔𝑅𝐴) 𝐼𝑅𝐴(𝑡)                                          

+ (
𝑏́

2
+
𝑏́2

2
𝜏𝐴𝜔𝑚1

) 𝐼𝑚𝐴1(𝑡) −
𝑏́

2
𝜏𝐴(𝑎𝛼

2 + 𝜏𝐴1𝑎
2𝛼3)𝐼𝑚𝑏(𝑡)                                                                                             

+
𝑏́

2
𝜏𝐴𝑎𝛼

2𝜏𝐴1𝑠𝑚𝑏(𝑡) +
𝑏́

2
𝜏𝐴(𝜏𝐴1𝑎𝛼

3𝜔𝐶𝐴1 + 𝑎𝛽
3𝜏𝐴1𝜔𝐶𝐴1 −𝜔𝑅𝐴1)𝐼𝑅𝐴1(𝑡)                                                                   

−
𝑏́

2
𝜏𝐴( 𝑎𝛽

2 + 𝜏𝐴1  𝑎
2𝛽3 )𝐼𝑚𝐶(𝑡) +

𝑏́

2
𝑎𝛽2𝜏𝐴𝜏𝐴1𝑠𝑚𝐶(𝑡) +

𝑏́

2
𝜏𝐴 𝑃𝑚𝐴1(𝑡) − 𝑃𝑚𝐴(𝑡) − 𝜔𝑚2

 𝐼𝑚𝐴(𝑡)    𝐼𝑚𝐴(0) = 𝐼𝑚𝐴
0

𝐼𝑅̇𝐴1(𝑡) = 𝜔𝑚1
𝐼𝑚𝐴1(𝑡) − 𝜔𝑅𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴1𝐼𝑅𝐴1(𝑡) − 𝜔𝑑𝐴1𝐼𝑅𝐴1(𝑡)        𝐼𝑅𝐴1(0) = 𝐼𝑅𝐴1   

0                                     

𝐼𝑅̇𝐴(𝑡) = 𝜔𝑚2
𝐼𝑚𝐴(𝑡) + 𝑅(𝑡) − 𝜔𝑅𝐴𝐼𝑅𝐴1(𝑡) − 𝜔𝐶𝐴𝐼𝑅𝐴(𝑡) − 𝜔𝑑𝐴𝐼𝑅𝐴(𝑡)       𝐼𝑅𝐴(0) = 𝐼𝑅𝐴

0                                            

 
(22) 
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The matrix 𝐴́ whose entries form the coefficients of state variables in the relationships 

category (27), is defined as follows: 


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  

The matrix 𝐵́ whose entries form the coefficients of control variables in the relationships 

category (27), is defined as follows: 
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3. Model solving 

In this section, the system of differential equations related to the proposed model will be derived 

and then solved.  

If 𝑄 = 𝑑𝑖𝑎𝑔{𝑞𝑖}, 𝐾 = 𝑑𝑖𝑎𝑔{𝑘𝑖} and 𝑅 = 𝑑𝑖𝑎𝑔{𝑟𝑗} is defined for 𝑖 = 1,2, … ,7 and also 

 𝑗 = 1,2, … ,9 is defined as diagonal matrices that are penalty factors, the model (15) can then 

be summarized as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥𝑥 (𝑇)𝑡𝐾𝑥 (𝑇) + ∫ [𝑥
𝑇

0

(𝑡)𝑡𝑄𝑥 (𝑡) + 𝑢(𝑡)𝑡𝑅𝑢 (𝑡)𝑑(𝑡) 

𝑠𝑡 
𝑥̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 (𝑡), 𝑥(0) = (𝑥)0 

(23) 

Where 𝐾 and 𝑄 are both the real diagonal matrices from the 7th grade and 𝑅 is the real 

diagonal matrices from the 9th grade with positive entries. 

Adequate optimization conditions are usually obtained for optimal control problems using 

the Hamiltonian. Hamiltonian should first be identified as follows to achieve optimum, 

sufficient conditions:  

𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) = 𝑥(𝑡)𝑡𝑄𝑥 (𝑡) + 𝑢(𝑡)𝑡𝑅𝑢 (𝑡) + 𝜆(𝑡)𝑡[𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)] (24) 

Based on the maximum principle, the optimum conditions for the problem (23) are as follows: 
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𝜕𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡)

𝜕𝑥
= 𝜆̇(𝑡), 𝜆(𝑇) = 2𝐾𝑥(𝑇) 

𝜕𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡)

 𝜕𝜆
= 𝑥̇(𝑡), 𝑥(0) = 𝑥0 

𝜕𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡)

 𝜕𝑢
= 0 

(25) 

Or its equivalent can be written as follows: 

 

−𝜆̇(𝑡) = 2𝑄𝑥(𝑡) + 𝐴𝑡𝜆(𝑡), 𝜆(𝑇) = 2𝐾𝑥(𝑇) 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 𝑥0 

𝑢(𝑡) = −
1

2
𝑅−1𝐵𝑡𝜆(𝑡) 

(26) 

From the third equation of the equation category (26), the optimal control law can be 

obtained. Therefore, the system of differential equations (26) is converted as follows: 

𝜆̇(𝑡) = −(2𝑄𝑥(𝑡) + 𝐴𝑡𝜆(𝑡)), 𝜆(𝑇) = 2𝐾𝑥(𝑇) 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) −
1

2
𝐵𝑅−1𝐵𝑡𝜆(𝑡)  𝑥(0) = 𝑥0 

(27) 

It should be noted that the equations category (26) as well as (27) are optimum conditions. 

To ensure that the control obtained 𝑢∗(𝑡) meets the required optimization conditions, which is 

optimize the minimization of the problem (23), the following matrix must be defined positively 

(Subbaram Naido, 2002). 

Π =

[
 
 
 
𝜕2𝐻

𝜕𝑥2
𝜕2𝐻

𝜕𝑥𝜕𝑢
𝜕2𝐻

𝜕𝑢𝜕𝑥

𝜕2𝐻

𝜕𝑢2 ]
 
 
 

 
(28) 

Which may be written as follows: 

Π = [
2𝑄 0
0 2𝑅

] 

However, since diagonal matrices (𝑅 and 𝑄 ) have positive entries, the matrix Π is positive 

and therefore the control obtained 𝑢
∗(𝑡) has the necessary optimization conditions. 

4. Numerical simulation 

The model was used by the Mashhad Panel Barsava Manufacturing Company to validate the 

proposed models and assess their applicability. The company's 3D panels are simulated in 

Figure 3, in the three-stage production-inventory system. MATLAB 2017 software will solve 

the final optimal control model to obtain the necessary results and objectives set for the research. 
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 Figure 3. Production-inventory model of 3D panel 

Each product often requires a specific process and production line. Mashhad Panel Barsava 

Manufacturing Company also has its own production process for its products. To produce 3D 

panels, first the raw materials for mesh (𝑠𝑚𝑏(𝑡)) and fork (𝑠𝑚𝑐(𝑡)) are ordered. The raw 

materials are then formed into a skeleton after welding. The amount of skeletal inventory is 

shown by 𝐼𝑚𝐴1(𝑡). At this stage, another raw material called polystyrene foam will be ordered 

to produce the 3D panel 𝑠𝑚𝑑(𝑡). The polystyrene foam (𝑠𝑚𝑑(𝑡)) and skeleton (𝐼𝑚𝐴1(𝑡)) 

inventory will be sent to (𝑃𝑚𝑑(𝑡)) and (𝑃𝑚𝐴1(𝑡)) in order to produce 3D panels, respectively. 

Some produced skeleton inventory may be refunded with 𝜔𝑚1
 rate. Among the returned 

skeletons, some will be recycled at the 𝜔𝐶𝐴1rate and after separation, will be added to the mesh 

and fork inventory with 𝐶𝑟𝑏(𝑡) and 𝐶𝑟𝑐(𝑡), respectively. And some will be sent at the 𝜔𝑚𝐴1rate 

for reworking. After combining polystyrene foam with the work in process in the previous 

stage, 3D panel will be produced. The production order of 3D panels is equal to (𝑠𝑚𝐴(𝑡)) and 

from their inventory (𝐼𝑚𝐴(𝑡)), some may be returned at the 𝜔𝑚1 
rate and the rest will be sent to 

the market as demand (𝐷(𝑡)) for distribution. From the returned 3D panel inventory (𝐼𝑅𝐴(𝑡)), 

some will be sent at the 𝜔𝑅𝐴 rate for reworking and will be added to the 3D panel inventory 

after reworking. Some will be recycled at the 𝜔𝐶𝐴 rate that will be added to the polystyrene 

foam (𝐼𝑚𝑑(𝑡)) and skeleton  (𝐼𝑚𝐴1(𝑡)) inventories. The rest will be disposed of at the 𝜔𝑑𝐴 rate 

of perishable goods
 
𝜔𝑑𝐴(𝑡)𝐼𝑅𝐴(𝑡). Among the panels distributed in the market, the 𝑅(𝑡) is 

returned as much. 
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Two models will be introduced next. The lead time in each production stage will be 

considered as zero in the first model, and in the second model the lead time for each production 

stage will be considered. It is worth noting that the parameters used in both models are similar. 

The values of the parameters and the beginning inventory amount related to Mashhad Panel 

Barsava Manufacturing Company are specified in Tables 2 and 3, respectively. 

Table 2. Constant parameters 

𝑏 𝑎 𝜏𝐴 𝜏𝐴1 𝑡 𝑇 𝛿 𝛾 𝛽 𝛼 𝜔𝑑𝐴 𝜔𝑑𝐴1  𝜔𝐶𝐴 𝜔𝐶𝐴1  𝜔𝑅𝐴 𝜔𝑅𝐴1  𝜔𝑚2 𝜔𝑚1 

p
aram

etr 

0.1 0.01 0.05 0.1 1 6 1 1 20 2 0.1 0.05 0.2 0.15 0.7 0.8 0.03 0.05 

V
alu

e 

Table 3. Inventory values at the beginning of the period 

RA
0I

 1RA
0I mA

0I 1mA
0I md

0I mc
0I mb

0I Variable 

4 3 5 20 20 100 100 Value 

 

4.1. First mode: Production-inventory optimal control model of 3D panels without 

considering the lead time  

By placing the specified parameters in tables 2 and 3 in the category of equation (13), a dynamic 

system is obtained in which the coefficients of state and control variables form the entries of 

matrices A and B, which are defined as follows: 


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Now consider the linear binomial optimal control (16). If the present penalty factors are 

defined as 

𝑄 = 𝑑𝑖𝑎𝑔{15,16,10,14,3,8,9}, 𝐾 = 𝑑𝑖𝑎𝑔{120,190,140,110,145,130,125} and 𝑅 =

𝑑𝑖𝑎𝑔{2,6,4,5,2,2,1,1,2} matrices, the final answer is shown in Figures 4 and 5. Therefore, 

variables of state and control converge to their target values. Since the state and control 

functions are the deviation between the answers and their objective functions, according to 
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Figures 4 and 5, when ∆𝑓 (𝑡) → 0(𝑓 (𝑡)) it can be a state or control variable), it means that 

𝑓 (𝑡) − 𝑓 (𝑡) is convergence to zero or 𝑓 (𝑡) → 𝑓 (𝑡) that means functions (state or control) are 

convergent according to their purpose. Convergence to predetermined target values means that 

inventory variables and the level of orders and shipments have reached the desired values for 

managers to control, which will ultimately reduce costs. 

 

4.2. Second mode: Production-inventory optimal control model of 3D panels with 

considering the lead time  

Now, if the specified parameters in Tables 2 and 3 are included in the delayed optimal control 

model (22), the matrix of coefficients of the state and control variables 𝐴́ and 𝐵́ is obtained as 
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Penalty factors in the current linear binomial optimal control will be considered the same as 

the previous model, so are defined as 𝑄 = 𝑑𝑖𝑎𝑔{15,16,10,14,3,8,9} 𝐾 =

𝑑𝑖𝑎𝑔{120,190,140,110,145,130,125} and 𝑅 = 𝑑𝑖𝑎𝑔{2,6,4,5,2,2,1,1,2} matrices. The results of 

solving this model are shown in figures 6 and 7. 

 
 

 Figure 4. Final solution for state variables (without LTs)   Figure 5. Final solution for control variables (without LTs) 
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Comparing the two figures 4 and 6, it can be clearly seen that the convergence velocity 

deviation of the inventories ∆𝐼𝑚𝐴1 , ∆𝐼𝑅𝐴1 , ∆𝐼𝑚𝐴, ∆𝐼𝑅𝐴 in the model without delay is greater than 

the delay mode, but the values of variables ∆𝐼𝑚𝑏 , ∆𝐼𝑚𝑐, ∆𝐼𝑚𝑑 in both delayed and non-delayed 

modes are almost equal, because at the beginning of each step there is no delay for inventories 

related to raw materials. 

Because there should be no additional fork and mesh raw materials in the skeleton production 

stage,  the diagram related to the deviation from the desired level of the two variables of mesh 

and fork (∆𝐼𝑚𝑏 , ∆𝐼𝑚𝑐) is equal in the case of no delay. However, if the system is delayed, the 

convergence deviation rate from the desired level corresponding to the fork is more significant 

than that of the mesh. The consumption coefficient of the fork is greater than that of the mesh. 

By comparing the skeletal inventory, it can be seen that the deviation from the desired level is 

first increased and then converges to zero in the case of a delay system. However, the behavior 

of the diagram for the raw material of the foam is the same in both models. 

Comparing the two figures 5 and 7, which are related to the deviation from the target level 

of control variables, the convergence rate is higher in the model without delay than the delay 

model. 

Table 4. Comparison of objective function 

Problem Delay Non-delay 

The value of the objective J  351890 216878 

 

  
Figure 6. Final solution for state variables (with LTs)  Figure 7. Final solution for control variables (with LTs)  
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5. Sensitivity analysis for 𝑸, 𝑲 and 𝑹 

In this section, sensitivity analysis is performed in order to show the effect of changes in 

diagonal matrices 𝑄, 𝐾 and 𝑅 and on the values of the objective function in both proposed 

models. The calculations and results that will be given in the continuation of this section are 

based on the information in tables 2 and 3. 

5.1. Changes in matrix 𝑸 entries 

As it is clear, by increasing the values 𝑞𝑖 for 𝑖 = 1,2, , … ,7 its effect on the values of the 

objective function in the two proposed models have been investigated. The following 4 figures 

show the convergence status of the state and control variables for values 𝑞𝑖 = 3 and 𝑞𝑖 = 11 

for  𝑖 = 1,2, , … ,7. 

  

Figure 8. Comparing the convergence speed of state  and control variables to their target for different values of 

𝑞𝑖   
(Non Delay ) 

In general, it can be seen that as the matrix 𝑄 values increase, the state variables converge 

faster. As the matrix 𝑄 values increase, the penalty for deviating from the target values of the 

state variables increases. Because the objective function is a minimization type, ∆𝑓(𝑡) =

𝑓(𝑡) − 𝑓 (𝑡) converges faster to zero for the state variables, or by increasing the matrix 𝑄   

values, the value of the objective function increases; However, it causes the convergence 

velocity of state variables to increase (in this example, zero), and convergence occurs faster. In 

all figures, the variables are grouped for two different values of the matrix. 
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Figure 9. Comparing the convergence speed of state  and control variables to their target for different values of 

𝑞𝑖 (Delay ) 

As shown in figures 8 and 9, as the values of the matrix increase, the convergence velocity 

of the control variables is supposed to be slower since the matrix 𝑄 is connected to the 

coefficients of the state variables. 

5.2. Changes in matrix 𝑲 entries 

As it is clear, by increasing the values 𝑘𝑖 for 𝑖 = 1,2, … ,7, its effect on the values of the objective 

function in the two proposed models have been investigated. The following 4 figures show the 

convergence status of the state and control variables for values 𝑘𝑖 = 100 and 𝑘𝑖 = 140 for 𝑖 =

1,2, … ,7. 

According to the following 4 figures and the table above, the matrix 𝐾 minimizes the final 

values of the state variables. Because the state variables' final values are very close to zero, the 

values of the table have changed slightly. 

  
 Figure 10. Comparing the convergence speed of state and control variables to their target for different values of 

𝑘𝑖(Non-Delay) 
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Figure 11. Comparing the convergence speed of state  and control variables to their target for different values of 
  

 

𝑘𝑖 (Delay ) 

5.3. Changes in matrix 𝑹 entries 

As it is clear, by increasing the values 𝑟𝑖for 𝑗 = 1,2, … ,9, its effect on the values of the objective 

function in the two proposed models have been investigated. The following 4 figures show the 

convergence status of the state and control variables for values 𝑟𝑖 = 2   and 𝑟𝑖 = 6   for 𝑗 =

1,2, … ,9. 

Increasing the matrix values as expected increases the objective function value. According to 

the following statistics, because the matrix is connected to the control variables' coefficients, 

the control variables converge more rapidly. As shown in Figure 13, since the coefficients of 

the state variables in the objective function have not changed, the convergence velocity of the 

state variables has slowed down.  

  
  

Figure 12. Comparing the convergence speed of state  and control variables to their target for different values of  

𝑟𝑖 (Non-Delay) 
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Figure 13. Comparing the convergence speed of state  and control variables to their target for different values of  

𝑟𝑖 (Delay ) 

Therefore, it is possible to summarize the sensitivity analysis of changes in the values of the 

coefficients of state and control variables in the objective function as follows: 

Table 5. Comparison of sensitivity analysis 

Control Variables State Variables 
Increase in the 

matrix values 

Convergence is slower because  𝑄 is 

the coefficient of state variables 

Convergence is faster because  𝑄 is the 

coefficient of state variables 
 𝑄 

Convergence is faster because 𝑅 is the 

coefficient of control variables 

Convergence is slower because  𝑅  is the 

coefficient of control variables 
 𝑅 

Not very effective Not very effective  𝐾 

As mentioned, the matrix 𝑄 form the coefficients of the state variables. As the values of the 

matrix 𝑄 entries increase, the state variables will converge faster. Since the matrix 𝑅 form, the 

coefficients of the control variables, the control variables' values will converge more rapidly as 

the values of the matrix 𝑅 increase. The matrix  𝐾 is the final coefficients of state variables, and 

since the final values of state variables are close to zero, they will not have much effect on the 

values of the objective function.  

Therefore, by increasing (in a specific range) the penalty coefficients, the convergence is 

accelerated. Results indicate that increasing the penalty coefficient in the objective function, 

accelerates the convergence of the state and control variables. 

6. Discussion 

As mentioned above, by studying previous research, it is observed that several optimal control 

models have been proposed to control production and inventory by MRP systems, which often 

did not take into account the lead time or include the return and reworking stages. In this study, 

a production-inventory optimal control model is proposed that eliminates this shortcoming. 
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Model implications are presented in two sections: theoretical implications, which mainly 

compare the proposed model with previous models, and practical implications, which include 

cases related to the interpretation of the results of the proposed model. 

6.1. Theoretical implications  

Based on Pooya and Pakdaman's (2019) proposed approach, an optimal continuous MRP 

control model can be modified to use computational aspects of CMRP. For example, state 

variables for inventory stores, control variables for the production, ordering, and demand 

programs, BOM system, and demand dependence on BOM can all indicate CMRP 

computational requirements. The current proposed model is a continuous MRP model that 

considers the delay due to production lead time (Pooya and Pakdaman, 2019) and a multi-stage 

production-inventory system (Pooya and Pakdaman, 2019). Since time is considered a 

continuous parameter, the lead time is considered in each production stage. Hence, the model 

is more realistic and feasible for all industries. It is also a proposed model for determining 

production values at any given time in discrete production processes, such as a workshop, 

handling the flow, and applying assembly lines. 

One of the significant differences between CMRP and DMRP is LT. In the CMRP system, 

the LT value can be any decimal number, while in the DMRP system provided by Ignaciuk and 

Bartoszewicz (2010). The LT must be an integer; in this model, if the LT is a non-integer, it 

should be rounded to the next larger integer. However, the number of orders will be received 

with a delay. If the LT is rounded to the first smaller number, orders will be received sooner, 

which will create a surplus inventory and thus increase maintenance costs, and MRP objectives 

will not be met. 

According to the model proposed by Foul and Tadj (2007), returned items will only be 

returned to the market for reworking. In this article's model, the produced items will be 

examined before distribution in the market to check the quality of the distributed items. The 

defective items percentage in the market also be reduced. For this purpose, the returned items 

should be identified in this stage. Additionally, the return stage for defective items is considered 

after distribution. Also, in the proposed research model, in addition to reconstruction, the 

recycling of items is considered. However, in Mishra's (2016) models, returned items will only 

be reworked, and the rest will be disposed of. In this case, the corruption amount in the items 

will be high, and their model's flexibility will be less than in real conditions. 
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The recycling stage of the returned items is a benefit of this model. Since recycled items can 

be used in the production process, manufacturers understand that product recycling can lead to 

increased profits. Returned items, in addition to manufactured goods, could also be work in 

process goods. Returned items can be work in process and manufactured items, some of which 

cannot be recycled and will be disposed of as spoiled items. Returned items may be reworked 

or recycled. It is assumed that the reproduction and recycling processes are complete, and all 

inputs have been converted into the desired output. Otherwise, if there is waste in the recycling 

and reproduction processes, the model will automatically adapt to new coefficients by adjusting 

its structure. 

Compared to previous models, one significant benefit of this model is that the sum of each 

initial item is sufficient only for production in the next stage. It is a multiplier of the number 

and the amount of inventory used in the BOM. It prevents the development of surplus 

inventories. 

Since the proposed optimal control model is linear-quadratic, an accurate answer could be 

obtained. However, approximate approaches can be used for large-scale problems. The state 

variables' positive values represent surplus inventory, which exceeds the warehouse capacity, 

and the negative values represent the warehouse capacity that has not been utilized fully. As 

shown in the figures, the inventories are close to the target values after short times when the 

order programs are set. 

6.2. Practical implications 

A three-level BOM model is presented in this study, which also offers the flexibility to produce 

products with higher BOM levels. 

The finite capacity of activities at workstations leads to limitations such as production, 

reconstruction, and recycling goals. The inventory objective is to minimize the difference 

between the stock level and its precautionary reserve level. The purpose of disposing of items 

indicates the desired level of disposal of perishable items, and the capacity to order, release, 

and transport raw parts are among other goals. Also, in MPS, the target demand for the final 

product is usually defined as planned demand. Therefore, minimizing the difference between 

demand and demand target at any given time creates consistency in the production process with 

the planned demand. 

Positive market values are due to the unnecessary release of goods relative to MPS' 

anticipated market. Similarly, negative values for demand indicate that product release is lower 

than the planned demand for MPS. However, as shown in the figures, the other variables are set 
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so that the (t)PmA converged to zero. It means that demand converges to predetermined target 

values. 

As shown in Figure 4, the changes in the 3D panel inventory have initially increased. Because 

the difference between the input variables of the sent skeleton levels and foam sent to this 

inventory has increased from the amount of 3D panel goods seen in figure 5, and then converges 

to zero. Because the amount of sending 3D panel items deviation from the desired level to the 

previous level has converged to zero, the difference between the amount of deviation of skeletal 

and foam items from the desired level of deviation of the final product from the desired level 

has increased. After the convergence of all three variables to zero, this difference is reduced 

and converges to zero. Therefore, the final product's increase is due to the over-shipment of two 

skeletal and foam items. Thus, to converge faster, the company should act as shown in Figure 

4, without delay. In the state of delay, as shown in Figure 6, it sends two skeletal and foam 

goods. 

According to Figure 4, the foam inventory rapidly converges to the desired amount. If Figure 

2 is taken into account, the foam raw material's deviation level is removed from this inventory. 

The level of the deviation of the raw material shipment is included. Figure 5 shows that the 

convergence velocity of sent items is greater than the order variable's convergence velocity. 

This means that the input rate has decreased relative to the output, resulting in an increase in 

the variable convergence velocity of the foam inventory mode. 

As the input and output variables to the skeleton's inventory deviate from its desired value, 

all of them are state variables that have been inputted and outputted at a constant rate, so no 

significant change in the values of this variable has occurred. It is uniformly converged to its 

target value, which is zero. 

The amount of the state variable of the skeletal stock level has increased from the desired 

predetermined value overtime period [0, 0.6], if Figure 6 is taken into account. Because in this 

period, the convergence velocity of the control variables and the input state were higher than 

the convergence velocity of the output variables. However, after this period, the convergence 

velocity in the output variables has increased, resulting in a decrease in the deviation of the 

skeletal stock level from its desired value. 

Analyzing the variable behavior of the final inventory mode of the product in Figure 6 shows 

that the inventory amount of this product first decreased and then converged to zero. According 

to Equation (20) and the coefficients of 3D panel product inventory variable in the matrix B in 

"production -inventory Optimal control model of 3D panels considering production lead time" 
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section, it can be seen the control variables of the fork, mesh, and skeleton order level are the 

input variables and the order level of the foam. The amount of sent 3D panel is the output ones. 

Due to the behavior of the above variables in figure 7, the negative value of the order levels of 

the two raw materials of mesh and fork and their coefficients in the matrix B , the final product 

and the order level of the raw material of the foam are converged with delay to their target, 

which reduces the inventory variable value of the final product in the delayed state. The lack of 

3D panel inventory in the mentioned range is due to the high level of ordering of the two raw 

materials of mesh, fork, and skeleton. 

7. Conclusions and future suggestions 

A quadratic linear optimal control model is modeled in this paper for a multi-stage production-

inventory MRP system, which considers the lead time of production. A delayed dynamic system 

was deemed for this reason. In the proposed model, the value of the objective function indicates 

the convergence rate of the variables (state and control functions) to their respective values. The 

inventories are state variables, while the order variables, the number of shipment goods, and 

the amount of demand for work in process are control variables. Production lead time refers to 

the time required to set up and process machines, as well as the time required to transport items 

between different parts of the system. One of the innovations in the proposed optimal control 

model compared to previous models is that it provides functions, allowing the amount of items 

sent to the next stage to be as much as needed for production, thereby preventing surplus 

inventory. 

In the delay model, the optimal delay control problem was approximated to a non-delay 

problem using the Taylor expansion. Finally, the exact answer to the problem without delay 

and the approximate answer to the delay problem were calculated and compared. A comparison 

of these responses revealed that the convergence of the non-delayed response to its target value 

is faster than that of the delayed one. Although the short lead time is assumed, the value of the 

delayed state's objective function is greater than the value of the non-delay problem. When the 

unit of time is large, the production lead time (less than one) can be reasonable. In the numerical 

simulation section, the time horizon 𝑇 = 6 is considered, the lead time 𝜏𝐴 = 0.1  means 2.4 

hours. One of the advantages of the proposed model is that, unlike the existing methods, the 

production lead time can be continuous and a fraction of a unit of time. 

Compared to the previous models, one of the significant advantages of this model is that the 

sum of each initial item until the next step is sufficient only for production. It is the quantity 
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factor and quantity of inventory used in the BOM that prevent the development of excess 

inventory. In this paper, a general material requirement planning (MRP) system with 

deteriorating items for continuous production processes is considered, and an optimal control 

model is introduced, taking into account finite capacity constraints. It helps planners consider 

and model limited capacities during scheduling processes. In the optimal solution, when the 

state and control variables tend to zero, it means that they converge to the target values of the 

variables based on the optimal plan. According to Table 1, some existing optimal control 

models for inventory-production systems were multistage; however, the authors did not 

consider the quantity of ordered items (raw materials) in the final product. Also, they did not 

consider any lot-sizing policy. Therefore, our approach for CMRP is new, considers which it 

deems the BOM by determining the amount of ordered items in the finished product along with 

the continuous production approach in a continuous time framework, as well as the LFL lot-

sizing policy. 

The optimal control model, in which the time parameter is continuous, is capable of modeling 

the state and control variables so that they converge to their target values. Since this research 

focuses on three-level BOM products, it is recommended that further research be conducted for 

higher-level BOM products. Additionally, this research considers the Lot for Lot ordering 

method. In future research, other types of ordering systems could be considered. As a future 

study, restrictions on control and inventory variables could be considered. In this case, different 

optimization conditions must be obtained. Uncertainty methods could be used for the proposed 

model parameters, such as random planning. A closed-loop answer for the proposed system 

could also be obtained and analyzed. In this study, the values of control variables (order, send, 

and demand) and state variables (inventories) are calculated as time functions, so the answer is 

open-loop. That order, shipment, and demand could be calculated as inventory functions 

(closed-loop). The proposed algorithm could be developed to incorporate other variables of 

state and control if conditions change. However, when the number of production lead times 

increases or the number of stages increases, the approximation error also increases. It is because 

the first period of approximation was used in the development of the Taylor expansion. Other 

existing mathematical methods could be used to solve the system of delayed differential 

equations in both cases. Instead of linear relationships, nonlinear relationships between 

parameters could be used. In this case, the calculated error could also be increased. 
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