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ABSTRACT

In this paper, we propose a multi-stage continuous-MRP system using an optimal control model, considering the
production lead time. In the proposed model, the lead time is specified for ordering work in process during the
second stage and for final product manufacturing. Also, the intended dynamical system is a multi-stage production-
inventory system that follows a linear-quadratic optimal control model with a time delay for the state variables. In
the proposed system, inventories are considered state variables, and the delivery levels and orders are control
variables. The return stage is considered for items whose production has been defective. According to their
situation, there are three destinations: the reworking stage, the recycling stage, or disposal. The amount of shipment
to the next stage of production is based on their BOM utilization coefficient and the inventory one. This stage will
consume all sent items at any time and will not create a surplus inventory. In this paper, time is considered a
continuous parameter proportional to the constant production processes. For validation, the proposed optimal
control model was simulated in a real study in the polymer industry.
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1. Introduction

Maintaining an inventory of raw materials incurs significant costs for manufacturing
companies, particularly in the mass production industry, prompting managers to consider more
carefully how to find the optimal solution to this problem. The primary achievement of a
required material planning system is the planning of part and goods production, as well as the
supply of raw materials, to ensure the production line can meet the required quantities at the
necessary time. Proper scheduling of raw materials purchases, on the one hand, and timely
ordering of parts for production, on the other, will lead to more reliable access to the raw
materials needed on the production line and the timely delivery of products according to a
comprehensive production schedule. If material requirements planning is successfully
implemented, overall inventory costs will be significantly reduced. Most studies on finite- or
infinite-capacity MRP systems focus on discrete-time systems. However, precise material
requirements planning is required at a consistent time. Discrete materials requirements planning
(DMRP) approach defines orders, demands, and products at a discrete time or Specific periods.
Therefore, the discreteness in the DMRP approach implies a breakdown in production time. In
this approach, the production parameters are defined over a fixed time. Thus, the available
inventory is determined from the beginning of the period.

In contrast, in Continuous Material Requirement Planning (CMRP) systems, the production
parameters are determined at each moment of the planning time horizon. In some industries,
such systems need to be considered because of their continuous production. In the
petrochemical and petroleum industries, for example, production occurs continuously, and
inventory levels are constantly changing. However, most of the research become established.
On the other hand, in the last decade, the use of optimal control theory in production planning
and inventory control has increased. Therefore, the literature on MRP and the application of
optimal control theory in production inventory systems are discussed for better understanding.

Sadeghian (2011) first introduced the CMRP approach and subsequently discussed its
advantages over the DMRP. He then presented a three-step algorithmic method for determining
scheduled orders in discrete MRP. In this algorithm, the scheduled orders were calculated
without an optimization approach. Louly et al. (2012) attempted to plan components in
assembly systems using the MRP approach. In their proposed model, the lead time was
randomly selected. Grubbstrom and Tang (2012) examined the effect of demand scheduling

and BOM conditions on the Solution space for production times. Milne et al. (2015) developed
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a mixed-integer programming approach to determine the optimal lead time for use in MRP
systems for discrete component production and a fixed-period batch size policy. Rossi et al.
(2017) suggested a capacity compatible with the MRP model. In their proposed model, finite
capacity was taken into account. They also determined a fixed lead time.

Le Thi and Tran (2014) discussed a plan to optimize the costs of setting up, transporting, and
inventing a multistage production system. Their optimization model was a nonlinear, complex
integer programming model. Mezghiche et al. (2015) considered an integrated production
forecasting system of tracking type. In their proposed system, the demand rate over a given
period depends on the demand rate of the previous period and the stock level. Hatami-Marbini
etal. (2020) considered a network of manufacturing machines based on the hedging point policy
where the final goods were perishable, and the demand rate was constant. Lee et al. (2021)
proposed a double-ended queuing model having backorders and customer abandonment. One
side of their model stores back orders, and the other side represents inventory.

Foul et al. (2012) presented an adaptive inventory system with an unknown deterioration rate.
Vercraene and Gayon (2013) focused on the optimal control model of a production inventory
system with disposable items and product returns. Pooya and Pakdaman (2021) presented a
manpower planning problem from a continuous-time optimal control. Dhaiban (2022) proposed
a new approach to finding integer solutions for the product inventory control model under a
periodic review policy. Their approach was based on the modified equations of the Pontryagin
maximum principle. Singer and Khmelnitsky (2021) considered a stochastic production-
inventory problem and solved it using optimal control methods. EIHafsi et al. (2021) addressed
the problems faced by manufacturers in dealing with customers with diverse needs and
determining which customers to serve when supply is limited, within a continuous-time
integrated manufacturing and inventory control framework. Gao (2022) extended the
production-inventory model with a stochastic term, and instead of analyzing steady states or
guessing the shape of the solution, they focused on PDEs. She applied the operator division
method after the Cole-Hopf transformation to the initial equation, rather than solving the ODE
system. Shen et al. (2022) investigated the uncertain production-inventory problem with
deteriorating items and developed an optimal control model in their research. They applied
uncertainty theory to derive the optimal equation. Nakhaeinejad et al. (2023) used the optimal
control theory to propose an order system and inventory management model. In their model,
the order was regarded as a time-dependent function and a control variable. In addition, the
need for each item was time-dependent and specified. The order and inventory system was

indicated as an optimal control problem.
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Hedjar et al. (2012) employed optimal control theory to determine the optimal production
rates in a production system. Mezghiche et al. (2015) presented a unified production forecasting
system using the control approach. In their proposed system, the demand rate over a given
period depends on the demand rate of the previous period, and the stock level. Benkherouf et
al. (2016) proposed an optimal control model for production and reworking in the inventory
system with finite planning horizons. Dizbin and Tan (2020) considered the production control
problem of a production-inventory system with correlated demand, inter-arrival, and processing
times. They proved that the optimal control policy is the state-dependent threshold policy. Al-
Khazraji et al. (2021) scrutinized the dynamic performance of the APIOBPCS model and the
newly modified 2APIOBPCS model for optimal control of production—inventory systems in
their study. Oztiirk (2021) investigated an economic production quantity model that explored
the impacts of a flawed manufacturing process with stochastic breakdowns and inspection
policies on a manufacturing inventory system with a repair, and determined the optimal
production run time.

Pooya and Pakdaman (2017) proposed an optimal control model for production-inventory
models. They solved the proposed optimal control problem with a neural network approach. In
most models discussed in the production field, it is assumed that production occurs in a single
stage. They also (2018) proposed a delayed optimal control model for a multi-stage production-
inventory system with production lead times. Still, their planning approach was not MRP and
merely managed the inventory of the various stages. In another article (2019), they proposed an
optimal control model for finite capacity continuous MRP, which does not consider production
lead time, including returned, reworked, and recycled goods with deteriorating items. Rachih et
al. (2022) addressed a discrete inventory control model for a reverse logistics system in their
paper. In their work, the optimal control policy consisted of minimal levels for stocks of returns
and new products and higher levels for remanufactured products. In contrast, the demand for
new products was higher than the demand for remanufactured products. Ignaciuk (2022)
examined the perspectives of linear-quadratic (LQ) optimal control in steering the process of
goods distribution in logistic systems with multiple transportation options. Megoze et al.,
(2022) presented a study on a manufacturing and remanufacturing system that degrades
according to its production rate. After formulating the optimal control problem that described
the studied system, they solved the HJB equations using a numerical method.

In many cases, production phasing and planning for each stage separately may be more

desirable. Primarily, when using equipment and machinery in separate, sequential applications,
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it is very cost-effective because it allows for flexibility in planning and reduces production costs
with a more accurate schedule. However, multi-stage production systems still occur despite the
production lead time, which neglect leads to incorrect planning and either increasing or
decreasing inventory. On the other hand, considering that in such production systems, there is
a possibility of defective goods after each stage, it is necessary to consider the return stage to
rework the returned product or recycle it into the raw materials of the previous step.

Table 1 provides a summary of the research conducted in the field of the present study. The
earlier models each had deficiencies in the multi-stage continuous MRP system, considering
the finite capacity, the delay in production lead time, and the possibility of re-working and
recycling. Many of the previous papers have proposed discrete-time models.

Grubbstrom et al. (2010) considered no capacity constraints. Ignaciuk and Bartoszewicz
(2010) dismiss the disposal phase of deteriorating items. Sadeghian (2011) presented a
continuous MRP model paper with no optimization approach. Louly et al. (2012) regarded lead
time as a random variable. Vercraene and Gayon (2013) presented a two-stage model that
ignored recycling. The proposed models did not apply to production systems, despite the
industries' production nature being continuous, such as the petroleum and petrochemical
industries, as well as some of the products in the construction industry. Benkherouf et al. (2016)
presented a model that lacked a recycling stage. Pooya and Pakdaman (2018) did not consider
the process of disposing of deteriorating items and reworking. In another paper (2019), they
presented a model in which production LTs were considered as zero. Al-Khazraji et al. (2021)
presented a continuous optimal control model that considered production lead time but did not
account for the return, rework, and recycling stages. Oztiirk (2021) proposed a delayed optimal
control model with a reworking stage, but in the proposed model, the stages of recycling and
disposal of perishable items were neglected. ElHafsi et al. (2021) and Gao (2022) proposed
continuous models that do not account for production lead time. In their models, they dismiss
the stage of disposal of deteriorating items. Shen et al. (2022) and Megoze et al., (2022)
investigated the production-inventory problem with deteriorating items, where the production
LTs were considered zero. Rachih et al. (2022) addressed a discrete inventory control model in
their paper. Although they included the rework stage in the model, the production lead time was
ignored. The challenge observed in earlier models is the lack of a comprehensive model to be
proposed for a multi-stage continuous MRP system with finite capacity, considering production
LTs with deteriorating items.

Yan and Sun (2024) employ constrained reinforcement learning to solve an optimal control

problem aimed at reducing fuel consumption in hybrid energy systems. By accounting for
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uncertainty and fluctuations in input data (such as sensor errors or changes in environmental
conditions) and integrating prediction with dynamic decision-making, they propose a multi-
stage framework that can be adapted to MRP systems with rework and recycling capabilities.
Luo et al. (2024) focus on a model predictive control (MPC) approach to optimize computations
in the presence of input delays. By predicting future states and solving the optimal control
problem one step ahead, they significantly reduce delays in implementing controls.

In this study, we introduce an optimal control multi-stage continuous MRP system with finite
capacity, considering production LTs with deteriorating items. Purchase and manufacturing
orders, shipments, and quantities returned from the market were considered control variables,
while inventories were treated as system states. Production LTs are to be the time required for
the production and purchase orders. In the proposed multi-stage system, it is permissible to
move the returned items from one inventory to the previous one due to the recycling and
reworking stages. An essential advantage of the proposed model, which was not addressed in
previous models, is that the number of items sent to the next stage must be a coefficient of their
use in the BOM as well as a coefficient of inventory. In other words, the number of goods
shipped at any given moment in time should be large enough to be used in production at all
times and not lead to a surplus inventory of any item at a later stage. The bottom line of Table
1 shows the features of the present study. There are two main steps to be solved by the theory
of optimal control: the modelling stage, or model description, and the model solving stage.

The first section of this study is (Model Descriptions) devoted to modelling and model
description. In this section, the proposed model and related diagrams are presented. Also, two
mathematical models for the delay and non-delay modes are offered. In the second section
(Model solving), the proposed linear-quadratic optimal control model is analyzed and solved.
In the third section (numerical simulation), the proposed model is solved using the actual

parameters studied. The fourth section (Sensitivity Analysis for O, K and R ) is devoted to

evaluating the proposed model. Finally, the last section (Discussion and Conclusion) includes

a discussion of model features, conclusions, and future research suggestions.
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Table 1. Previous research on MRP mathematical models and challenges

JSTINP

Model Challenge
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Author Topic Type of Model 3 E z 25 § E b § z s 5 z E = _E
a 2z £ = E£8 23 2 o=
S & © ~ © S = =
=9 = 2, s A~
Sadeghian (2011) MRP MRP *
Grubbstrom et al. (2010) MRP MRP * *
Rossi et al. (2017) MRP MRP *
Milne et al. (2015) MRP MRP *
Louly et al. (2012) MRP MRP *
Grubbstrom and Tang (2012) MRP MRP *
Le Thi and Tran (2014) MRP Integer nonlinear programming model *
Hedjar et al. (2012) Opnmal cor}trol ap phcatlons mn Continuous optimal control *
production planning and inventory control
Dizbin and Tan (2020) Continuous optimal control * * * *
Mezghiche et al. (2015) " Continuous optimal control * *
Pooya and Pakdaman (2017) " Continuous optimal control * * * *
Pooya and Pakdaman (2018) " Continuous optimal control * *
Pooya et al. (2019) " Continuous optimal control * *
Pooya and Pakdaman (2019) " Continuous optimal control
Singer and Khmelnitsky (2021) Continuous optimal control * * *
Dhaiban (2022) Continuous optimal control * * * * * *
Dong et al. (2011) " Continuous optlmal control %
, multi-stage
Hatami-Marbini et al. (2020) Continuous optimal control * * * *
Benkherouf et al. (2016) " Continuous optimal control * *
Vercraene and Gayon (2013) " Discrete optimal control, two-stage * * *
Lee et al. (2021) * * * *

Continuous optimal control

Ignaciuk and Bartoszewicz
(2010)

Discrete optimal control
, multi-stage

Al-Khazraji et al. (2021)

Continuous optimal control
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Megoze et al. (2022) " Continuous optimal control * * * *
Ignaciuk (2022) " Discrete optimal control * * * *
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2. Model descriptions

The proposed model in this study will be a multi-stage production-inventory planning model
that involves returning, recycling, and reworking the returned products. Since the proposed
model will consider the production lead time in each stage, two models are presented. In the
first model, the production lead time will be zero, and in the second model, the actual lead time
will be considered at each stage of production. The intended production-inventory system
produces a final product called 4. In the first stage of the model, two raw materials (b and c)
will be bought and assembled. Then, the work in process (4;) will be produced. In the second
stage, the work in process will be mixed with the raw material (d), and the final item (4) will
be produced. To produce each unit of (4;), we need a unit of b and £ unit of c. In the next

stage, to make each unit of 4, we need § unit of A; and y unit of d (figure 1).

b9 ()

Figure 1. product three-level tree

Pooya and Pakdaman (2019) presented an MRP optimal control model for finite capacity
without considering the lead time. In another article (2018), they offered a multi-stage model
considering production lead time. The proposed model in this study combines these two models.
The multi-stage production-inventory system shown in Figure 2 is a continuous MRP model,
including the stages of recycling and reworking on returned items. In this model, the disposal
stage of deteriorating items is also considered. In the proposed model above, the first step is
ordering the raw materials (b and c), which is shown with s,,,;, (t) and s,,,.(t), respectively. The
amount of these two raw materials in the unit of time also equals to I,,,;, (t) and I,,,.(t). Next,
by combining the two raw materials, the work in process (4;) is produced. The amount of
shipment of the above items for production equals to P, (t) and B,,.(t), respectively. The first
stage inventory (I;,4, (t)) will be divided into two parts. Part of the inventory will be sent to the
next stage (P4, (t)) for A production and the other part will be returned at a wy,; rate. Some
of the returned goods will be shipped to the remanufacturing or reworking stage at a wg,4, rate
and some will be referred to the recycling stage at a w¢,4, rate (from the inventory of recycled

goods, the part related to the raw material b (C,;, (t))will be added to the inventory of b and part

related to the raw material (c) will be added to the inventory of ¢).
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Figure 2. Diagram of the proposed model
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The remaining items at this stage that cannot be reworked or recycled will be disposed of at
a wgy, rate. In the second stage of production, the inventory of manufactured goods (Ir,4(t))
will be divided into two parts. Part of the inventory will be shipped to the market based on the
market demand (D (t)) (that Pp,4 (t) = D(t)) and the remainder will constitute returned goods
at the rate (wg,4 ) and returned goods, similar to the preceding two-stage, will be added to the
remanufacturing (w4 ) or recycling stage (at the rate w¢,4 ) and some of them will be disposed
of at the w4, rate. Some of the shipped goods will also be returned to the market (R (t)) which
will be added to the second stage returned goods inventory.

The variables and parameters used in the model will be as follows. These symbols are used
throughout the article for state and control variables.

State and control variables

Imp (t): Inventory of ordered items b at time ¢
I (t): Inventory of ordered items € at time f
I;nq (t): Inventory of ordered items d at time !
L, (t): Inventory of ordered items A; at time /

I;na(t): Inventory of manufactured final production A at time ¢
Ir4, (t): Inventory of returned items A at time /

Ig4(t): Inventory of returned final production A at time ¢
Control variables

Smp (t): Level of ordering and releasing the items b at time t

Sme(t): Level of ordering and releasing the items C at time ¢t

Sma(t): Level of ordering and releasing the items d at time t

Sma, (t): Level of ordering and releasing the WIP items A;at time ¢

Sma(t): Level of ordering and releasing the final production A at time t

P (t): Level of items b which will be transmitted for producing A;at time t
Pnc(t): Level of items ¢ which will be transmitted for producing A;at time t
Ppa(t): Level of items d which will be transmitted for producing A at time !
P, (t): Level of WIP items A; which will be transmitted for producing A at time ¢
Ppa(t): Level of manufactured and released items A at time ¢

Cyp(t): Level of recycled items b at time t

Crc(t): Level of recycled items c at time t

Crq(t): Level of recycled items d at time t

Cra,(t): Level of recycled WIP items A, at time ¢

D (t): Released demand of manufactured items A at time t

R (t): Level of returned items A from market at time t

Parameters

wm1: Rate of returning in the stock of manufactured WIP items A;
wm2:Rate of returning in the stock of manufactured final production A
gy, Rate of reworking in the stock of returned WIP items A4
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wpga: Rate of reworking in the stock of returned final production A
wca,: Rate of recycling in the stock of returned WIP items A4
wca: Rate of recycling in the stock of returned final production A
wgqa,: Deterioration rate in the stock of reworked WIP items A,

w q4:Deterioration rate in the stock of reworked final production A
a: Number of items b which will be used for producing A4

f: Number of items ¢ which will be used for producing A,

y :Number of items d which will be used for producing A

&: Number of item A;which will be used for producing A

T4, : Production Lead Time for WIP items A

7,4: Production Lead Time for final production A

The number of shipped items ( b and c) should be a coefficient of their use in the BOM as
otherwise, the amount of raw material shipped for production A;would be excessive. This
coefficient is defined a. In other words, the number of goods shipped at any time should be

such that they are all used for production A; and there is no additional shipment of any of them.

It should also be a coefficient on the amount of inventory available at any given time. So, it can

be stated:
{Pmb (t) = aaly,(t)
Prc(t) = aBlnc(D) (1)

But given that the number of items shipped at any time should be less than the number of
goods above, so it should be 0 < aa,aff < 1.
The order of manufactured item (A4;) at any given time is obtained from the following

relationship:

SmAl (t) = min {Pm(bx(t) ) Pm[c?(t)} (2)

In order not to ship items b and c in production A; more than the production need, it should

be:

Pmp(t) _ Ppc(t)

So it can be stated:

o [Pmp () Pmc() Pp(8) _ Pmc(t)
Sma, (¢) min (£l e} — o) _ Fne 4)

According to the relationships (1):

Prp ) = aalyy t) = = alyp )

Piel(t
Pnc(t) = afly(t) = % = alp(t)

Pmp (t)
a

)
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According to the relationship (3):
Alipp () = Al (t) = Ly (£) = Ly (0) (6)

In the next stage, the manufactured product will be transformed into the final product (4) by
mixing the raw material (d). At this point, the shipping rate of the above items is equal to
Ppq(t) and Pp 4 (t), respectively. Similar to the one described in the previous stage, we can

conclude the following relationships (here the coefficient b is defined):

Pm (t) = I;Vlm (t)
Pons. (8) = bl (8 ™)

In which 0 < by, b6 < 1.

At this point, the manufactured product order A must follow the following relationship at all

times.

P P, (&
Sma(t) = min ;i(t), Ad( ) (8)

In order not to ship items d and A; in production A more than the production need, it should
be:

Pra(®) _ P, ©
e ©)

And according to the relationships (9) and similar to the above, it can be stated:
Lpa, (t) = L ()

By placing relationships (3) and (9) in relationships (2) and (8), the following relationships

will be achieved:

SmAl(t) — min{PmZ(t)’Pmc(t)} — Pmb(t) — Pmc(t) — ipmb(t) +ipmc(t)

B a B 2a 2B (10)
_ . Pmd(t) PmAl(t) _Pmd(t) _PmAl(t) _ 1 1
kSmA (t) - mln{ Y ’ 5 - Y - 5 - Z mb (t) + ZPmA1 (t)
And according to Figure 2,and recycling and detriration rates it can be stated:
( Crp(t) = wca,lra, ()
Crc(t) = Bwca,lra, ()
Cra(t) = ywca,lra(t)
kCrAl (t) = bwca,lra(t)
(11)

{PalA1 (t) = waa,Ira, (O
Pga(t) = waalra(t)
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2.1. Model one: The mode without considering the lead time

The dynamic behavior of the above-proposed model can be expressed in terms of the following

relationships:

Ly () = Sy (£) + Crp (£) = P (£) L (0) = Iy

Iime(®) = Sme(t) + Cre(t) = Prc(®) I (0) = Iy,

imA1 (t) = Sma, (6) + wra, Ira, () + Cra, (t) — P, () =i, Ima, () Lpa, (0) = 1191,41

$ I (®) = Sma (8) + Crg (8) — Pa () Ima(0) =194 (12)
Ima(®) = sppa(t) + wgalga(t) — Pra(t) =, I a (t) Lna(0) = Ina

jRAl (t) = W, Ima, () — wpa,Ira, (t) — @wca,Iga, (t) — Pga, (t) Ipa, (0) = I;(z)Al

Ura(t) = W, Ima(t) + R(t) — wra,Ira, (t) — wca, lra(t) — Pga(t) Iga(0) = IR

By placing the relationships category (10) and (11) into the relationship category (12), the
following relationships are obtained:

Ly () = Sy (8) + @wca, Ira, () = Py (£) Ly (0) = Iy
jmc(t) = Smc (t) + ﬂ(‘)CAllRAl (t) - Pmc(t) Imc(o) = Ir(;lc

, 1 1
Lpa, (t) = meb ® + ﬁpmc(t) + wra Tra, () + 8wca,lra, (£) = Pra, () —Wm, Lna, (£) Ima, (0) = I&Al

$ Ina (@) = Sma(®) + ywealga(t) — Pra ()

. 1 1
ImA (t) = ﬂpmd (t) + %PmAl (t) + (‘)RAIRA(t) - PmA (t)_wmzlmA (t)

iRAl () = Wiy lna, (£) — Wra Ira, () — wca, Ira, (€) — Wga, Ira, (£)
\Ira(t) = W, Ima(t) + R(t) — wralra, (t) — Wcalra(t) — wgalra(t)

Ina(0) =104
Ima (0) = IT(:I.A

IRA1 0) = 11(2)A1
Ira(0) = II(Q)A

Column matrices (X (t)and @ (t)) including state and control variables are defined as follows:

Z (1) = [y (©) Ine (©) Tua, () Tna(6) Lua () T, (©) Tea (01

T() = [525(8) Sc(8) 50a(6) P (£) Prnc(6) Py, (6) P (6 Poua (£) R(DT

The matrix A whose entries form the coefficients of state variables in the relationships

category (13), is defined as follows:

0 0 0 0 0 o0 CAI 0

0 0 0 0 0 fo CA] 0

0 0 ~0y] 0 0 0 Ml do ¢y

0 0 0 0 0 0 10 ¢4

0 0 0 0 ~0 ) 0 0 py

0 0 O] 0 0 -(0py I”UCA l+a)dA l) 0

0 0 0 0 ) 0 “(oprogtogy )

WAl Miri et al., JISTINP 2025; Vol. 4. No. 3

DOI: 10.22067/JSTINP.2025.94678.1164

(13)


https://doi.org/10.22067/jstinp.2025.94678.1164

Designing an Optimal Control Model of Finite Capacity, Multi-stage Continuous MRP System JSTINP

And the matrix B whose entries form the coefficients of control variables in the relationships

category (13), is defined as follows:

1 0 0 -1 O 0 0 0 O
o1 0 0 -1 O 0 0 O
0 0 O LI 1 0 0 O
20 28
B={0 0 1 O 0 O -1 0 O
0O 0 0 O 0 L 1 0
25 2y
0 0 0 O 0 0 0 0 O
000 0 0 0 0 0 1]
According to A and B matrices, it could be stated:
% (t) = A%(t) + Bii(t), %(0)%, (14)

To obtain the target values of the state and control variables, the relationship is defined as

follows:

Af®)=fO)-f® (15)
Where f is the control or state variable and f is the target value of f. So we define x(t) and

u(t) matrices as:

xX(t) = [Alyp () Al (t) Alia, () Al (8) Al () Alga, (£) Alpa (D]

u(t) = [ASmp(t) ASpc(t) ASpg(t) APpp(t) APpc(t) APpa, APpa(t) APpa(t) AR()]T

The goals for the state and control variables are the constraints that apply to these variables
in the model. The purpose of producing, remanufacturing, or recycling items is the finite
capacity for which the workstation is intended, and the purpose of inventories is the finite
capacity that should be considered for warehouses. Therefore, when the objective function is a
minimization type of Af , the objective function is actually to converge between the control and
the state variables with their target values.

Now, considering the above explanation and the set of equations (13), the problem of linear

binomial optimal control with finite time is defined as follows:

min ky (AlLyp (T))* + ky (A (T))* + k3(Alma, (T))? + kg (AL (T))* + ks (AL a(T))?
+ kg (Alga, (T))* + k7(Alga(T))?

T
fo (1 (A () + 0y, 2 + 5 (Bl ) + 44 (Blna®) + a5(Alma(®))”

2 2
+ 6 (Blra, () + @7 (Alga(8))” + 71855 (£) + 1283 (£) + 73853 (£)

+ 14 APp () + 15APp(8) + 16APp4, (1) + 17APp () + 15APp4 () + 19AR(2)]dE
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St. (16)
Al (£) = Aspp () + @wea, Alpa, (£) — APy (£) AlL,, (0) = ALY,
AImc(t) = Asmc(t) + ﬁwCAlAIRAl (t) - APmc(t) AImC(O) = Alreu:
1

AImAl @® = APmb )+ 28 APmc (t) + wra,Alga, (t) + Swca, Mgy (t) — APy, () —wp Aliyy, (£) Alpy, (0) = Nr?ml

Alng(t) = Asmd(t) + Ywcallpa(t) — APpq(t) Al (0) = AL,
1 1

AlL,a(t) = yAP ma () ‘|‘ APmAl(t) + WraAlRa(t) — AP (£) — Wi, Al 4 (£) Alyps(0) = Alp,
AIRA1 () = W, Alpa, (t) — Wpa, Alga, (t) — wca, Alpa, (£) — wga, Alga, (t) Algy, (0) = AI}(E)Al
\Alpa(t) = W, Alypa(t) + AR(t) — wralAlga, (t) — wcallga(t) — waaAlga(t) Alr,s(0) = AlR,

Where k; and q; (i =(1,2,...,7)) and also r; (j = (1,2,...,11)) are non-negative real
numbers that are considered as penalty coefficients of the deviation of the variables from their
target values.

As is known, the matrix entries A and B are coefficients of the state and control variables of

the model constraints (16).

2.2. Model two: The mode with considering the lead time
In this model, the lead time is considered in each stage of production. Therefore, the
production lead time for the work in process (A;) 1s 74, and for Product A is defined as 4.

Lpa, (£) = aa? Iy (t — TAl) + aP P (t - TAl) + wra, Ira, (1) + Swcalpa(t) — Ppa, (£)
- wmllmAl ®) ImAl 0) = IrOnAl

(17)

The following relationship will be obtained considering the lead time for the product A:

. b b
Lipa(t) = > ma(t —Ta) + EImAl(t —T4) + wralga(t) (18)
= Pra(t)—wm, Ina(t) L;na(0) = Iy
Since the above two equations are a linear system of delayed differential equations, we will
have the equation (13) using Taylor expansion as follows:
I (©) = spp(©) + awca,Ira,(©) = Pmp(t) Ly (0) = 13,
jmc(t) = Spe(t) + ﬁwCAIIRAl(t) — Py (t) L (0) = Ir(;w
ij1 () = aa®(Lp (t) — T4, Iy () + aB? (Imc(t) - TAlimc(t)) + wra, Ira, (t) + Swcalga(t)
—Pra,(®) — 0, Ipa, () 1pa, (0) = mA1 (19)
imd (t) = Smd (t) + waAAIRA (t) - bylmd (t) Imd (0) = IT?’Ld

, b b .

ma® =5 (Ina(® = Talma(®) +5 (Ina, (© = Talma, () + @rala(®) = Prua(©=0m, na®)  Ina(0) = I
iRAl(t) = Wy, Ala, (£) — wRAlAIRAl(t) —wcaylra, (0) — 0aa, Alga, (£)  Iga,(0) = I}(?)Al

Iga(t) = Wm, Iya(t) + R(t) — wralga, (t) — wcalra(t) — Waalga(t)  Ira(0) = I,
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The above equation will be converted as follows after simplification, by placing the first an

d second equations in the third equation:

ijl (t) = (aa® + 14,a%a®) Ly (t) — aa? 14, (Smp (t) + (=74, 003 wca, — aB>T4, wca,
+ wgra,)ra, (t) + (aB? (20)
+ 74, 0% B e () — T4, 0B (Smc(t) + Swealga(t) — Pra, ()
— Wmilna, (£)  I;ma, (0) = Irgml

And putting the equation (20) and the fourth equation of the equation group (19) in the fifth

equation will transform the above equation as follows after simplification:

2

, b b b b b
Ia(t) = <§ - 7VTA> Ina(t) — ETASmd(t) + <§ YWcaTy — ETA6(‘)CA + wRA) Ipa(t)

-

b b? b
+ <_ + _TA(Um1> ImA1 (t) — ETA(QQ’Z + TA1a2a3)Imb(t)

2 2
: 2 b 3 3 1)
+ ETAaa’ TAlsmb(t) + ETA(TAIQQ’ wCAl + aB TAleAl - wRAl)IRAl (t)
b b b
- ETA( ap? + 1, a*B3 Y (t) + 5 aB?tuTy Smc(t) + 57 Pra, (1)
— Ppa(t) — Wm, Lpa(t) Lna(0) = Ir?zA
Therefore, by placing equations (20) and (21), the equation groups (19) will be as follows:
I (©) = spp(©) + awcy, Ira, (£) = Ppp(t) I (0) = b
Lne () = Spce() + BwCAllRAl () = Bpc(t) L (0) = 17?1(;
ijl(t) = (aa®+ TA1a2“3)Imb () — aazTAlsmb ®+ (_TAlaa3wCA1 - a.BSTAleAl + wra,)ra, (t)
+(aB? + 74,02 B e (t) — aB?Ta, Smc(t) + Swcalpa(t) = Pa, () — winilma, ()
jmd(t) = Smd(t) + waAIRA(t) - Pmd(t) Imd(o) = Ir?ld
. b b2 b b b
Lna(t) = 55 VA Lng(8) — 5 TaSma ®) + 5 Y@caTa ETA6wCA + wga | Ira(t) (22)

-

b b? b
+ <§ + 77Awm1> L, () = 2% (aa? + 74,020 )Ly (£)

b b
+§TAaaZTAlsmb(t) + ETA(TAlaa3wCA1 +ap3t,y wea, — a)RAl)IRAl(t)

- -

b b b
_ETA( aB?® + 14, a*B3 Ymc(t) + EaﬁzTATAlsmc(t) + 5 Ta Pra, () = Pra() = W, Ina@®)  L;a(0) = Iy

iRAl (t) = W, lna, () — 0ra, Ira, (£) — Wca, Ira, (6) — Waa,Iga, (€)  Iga,(0) = I}(?)Al

Ira(0) = W, Ima(t) + R(t) — wralpa, (t) — wcalga(t) — waalga(t)  Ira(0) = IRa

The column matrices (¥(t)and i(t)), which include the state and control variables, are
defined as follows:
() = [1p(®) T ®) Ty (0 T (®) Tua®) Taa, (O Tra ()]

() = [535 () Smc(®) () Prp(®) Punc() Proa, Prog(®) Prua(t) R(OT
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The matrix A whose entries form the coefficients of state variables in the relationships

category (27), is defined as follows:

0 0 0 0

0 0 0 0
2 23

(af “+74a”f")
0 0 0 0

! )

(aa2+rA]a2a3) 0 0

0

0

0

0

b 2 23 b 2 108, B
_ETA(aa +TAJa a) _ETA(aﬁ +TAla ﬁ) (5‘*’57,4”'71]) (?_777'/1) “Wm2

0 0 Ol 0

0 0 0 0

0

O m?

a0 ¢y | 0
fo cyq | 0
3 3
~(ty,00" Oy +af "1y Ocy ~Opy ) docy
0 10 g

' ' '

3 3 b b
ETA(TAlaa Oy, +aB 714, Ocq, ~Opg ) (E7WCATA—5TA5WCA +opy)
’(‘URAIH"CAIH’JdAl) 0

0 “(opg tocy to gy )

The matrix B whose entries form the coefficients of control variables in the relationships

category (27), is defined as follows:

1 0
0 1
—aaZTAI —aﬁZrA
B=| 0 , 0
—aOCZTATAI —aﬁZTArA
0
L 0 0

3. Model solving

-10 0 0 00
0 -1 0 0 00
00 -1 0 00
00 0 -100
0 0 2z, 0 -10
00 0 0 00
00 0 0 0 1]

In this section, the system of differential equations related to the proposed model will be derived

and then solved.

If Q=diag{q;},K = diag{k;}and R = diag{r;}is defined for i =1,2,..,7 and also

Jj =1,2,...,9 is defined as diagonal matrices that are penalty factors, the model (15) can then

be summarized as follows:

T
Minimizexx (T)*Kx (T) + f

0
st

x(t) = Ax(t) + Bu (t), x(0) = (x)°

[x () Qx (t) + u(®)*Ru (£)d(t)

(23)

Where K and Q are both the real diagonal matrices from the 7th grade and R is the real

diagonal matrices from the 9th grade with positive entries.

Adequate optimization conditions are usually obtained for optimal control problems using

the Hamiltonian. Hamiltonian should first be identified as follows to achieve optimum,

sufficient conditions:

H(x(t),u(t), A(t), t) = x(£)tQx (t) + u(t)*Ru (t) + A(t) [Ax (t) + Bu (t)]

(24)

Based on the maximum principle, the optimum conditions for the problem (23) are as follows:

*BN Miri et al., JSTINP 2025; Vol. 4. No. 3
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OH (x(1), u(6), A(0), 1) _ A(0), A(T) = 2Kx(T)

dx
aH(x(t)J;(/lt).ﬂ(t), t) — (6), x(0) = x° (25)
LCONTORICTDNN

du

Or its equivalent can be written as follows:

—A(t) = 20x(t) + A*A(t),  A(T) = 2Kx(T)
u(t) = —%R"lBtA(t)

From the third equation of the equation category (26), the optimal control law can be

obtained. Therefore, the system of differential equations (26) is converted as follows:

i) = —(ZQx(t% + ATA(Y)),  A(T) = 2Kx(T) 27)
x(t) = Ax(t) — EBR‘lBt/I(t) x(0) = x°

It should be noted that the equations category (26) as well as (27) are optimum conditions.
To ensure that the control obtained u*(t) meets the required optimization conditions, which is
optimize the minimization of the problem (23), the following matrix must be defined positively

(Subbaram Naido, 2002).

[aZH aZH]
M=|0x* 0xdu (28)

| 9%2H 0%H

l(’)uf)x du? J

Which may be written as follows:
_[2¢ O
= [ 0 2R
However, since diagonal matrices (R and Q ) have positive entries, the matrix II is positive

and therefore the control obtained u*(t) has the necessary optimization conditions.

4. Numerical simulation

The model was used by the Mashhad Panel Barsava Manufacturing Company to validate the
proposed models and assess their applicability. The company's 3D panels are simulated in
Figure 3, in the three-stage production-inventory system. MATLAB 2017 software will solve

the final optimal control model to obtain the necessary results and objectives set for the research.
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Figure 3. Production-inventory model of 3D panel

Each product often requires a specific process and production line. Mashhad Panel Barsava
Manufacturing Company also has its own production process for its products. To produce 3D
panels, first the raw materials for mesh (s,,;,(t)) and fork (s,,.(t)) are ordered. The raw
materials are then formed into a skeleton after welding. The amount of skeletal inventory is
shown by I, 4, (t). At this stage, another raw material called polystyrene foam will be ordered
to produce the 3D panel s,,4(t). The polystyrene foam (I,,,4(t)) and skeleton (I,,,(t))
inventory will be sent to (Ppq(t)) and (P4, (t)) in order to produce 3D panels, respectively.
Some produced skeleton inventory may be refunded with w,, rate. Among the returned
skeletons, some will be recycled at the w4, rate and after separation, will be added to the mesh
and fork inventory with C, (t) and C,..(t), respectively. And some will be sent at the wy, 4, rate
for reworking. After combining polystyrene foam with the work in process in the previous
stage, 3D panel will be produced. The production order of 3D panels is equal to (s,,4(t)) and
from their inventory (I;,4(t)), some may be returned at the w,y, rate and the rest will be sent to
the market as demand (D (t)) for distribution. From the returned 3D panel inventory (Ig4(t)),
some will be sent at the wp, rate for reworking and will be added to the 3D panel inventory
after reworking. Some will be recycled at the w4 rate that will be added to the polystyrene
foam (I;,q(t)) and skeleton (I, (t)) inventories. The rest will be disposed of at the w44 rate
of perishable goods wg4(t)Ig4(t). Among the panels distributed in the market, the R(t) is

returned as much.
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Two models will be introduced next. The lead time in each production stage will be
considered as zero in the first model, and in the second model the lead time for each production
stage will be considered. It is worth noting that the parameters used in both models are similar.

The values of the parameters and the beginning inventory amount related to Mashhad Panel

Barsava Manufacturing Company are specified in Tables 2 and 3, respectively.

Table 2. Constant parameters

=]
o
=
§ Wip1 W2 wRAl Wra (IJCA1 Wea wdAl Waa A B Y 6 T t TA1 Ty a b
&
=
g 0.05 003 0.8 0.7 0.15 0.2 0.05 01 220 1 1 6 1 01 005 0.01 0.1

Table 3. Inventory values at the beginning of the period

Variable 1% 1% 1%a  1'wma, 1%q 1"ma, 14

Value 100 100 20 20 5 3 4

4.1. First mode: Production-inventory optimal control model of 3D panels without

considering the lead time

By placing the specified parameters in tables 2 and 3 in the category of equation (13), a dynamic
system is obtained in which the coefficients of state and control variables form the entries of

matrices A and B, which are defined as follows:

- - 100 -1 0 0 0 0 0
o 0 0 0 0 03 0

0 0 0 o 0 3 0100 -10 0 00

0 0 -005 0 0 08 07 000 - 5 1 00

A= 00 0 0 0 0 02 B=[0 01 0 0 0 -1 0 0

0 0 0 0 -0 0 07 0000 o L 1 _1o

0 0 050 o -1 0 000 0 0 %) (2) 0 0

000 0 0} 0 -1 | 0000 0 0 0 0 1

Now consider the linear binomial optimal control (16). If the present penalty factors are
defined as
Q = diag{15,16,10,14,3,8,9}, K = diag{120,190,140,110,145,130,125} and R =
diag{2,6,4,5,2,2,1,1,2} matrices, the final answer is shown in Figures 4 and 5. Therefore,
variables of state and control converge to their target values. Since the state and control

functions are the deviation between the answers and their objective functions, according to
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Figure 4. Final solution for state variables (without LTs)
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Figures 4 and 5, when Af (t) = 0(f (t)) it can be a state or control variable), it means that
f (t) — f (t) is convergence to zero or f (t) = f (t) that means functions (state or control) are
convergent according to their purpose. Convergence to predetermined target values means that
inventory variables and the level of orders and shipments have reached the desired values for

managers to control, which will ultimately reduce costs.
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-200
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Time Horizon
Time Harizon:

4.2. Second mode: Production-inventory optimal control model of 3D panels with
considering the lead time
Now, if the specified parameters in Tables 2 and 3 are included in the delayed optimal control

model (22), the matrix of coefficients of the state and control variables A and B is obtained as

0 0 0 0 0 o] 1 0 0 -10 0 000
00 0 0 0 3 o 0 1 0 0-1 0 000

0.04008 408 -005 0 0 -04012 02 -004 -4 0 00 -1 000
A=l 0 0 0 0 0 0 02 |B'=| 0 0 1 00 0 -100
~0001 081 00501 0.0497 -003 -0.0017 07 0.00001 0.001 —0.0025 0 0 0.0025 0 —10

0 0 005 0 0 -1 0 0 0 0 00 0 000

Lo 000 00 -1 0O 0 0 00 0 001

Penalty factors in the current linear binomial optimal control will be considered the same as
the previous model, so are defined as Q =diag{1516,10,14,3,89} K =
diag{120,190,140,110,145,130,125} and R = diag{2,6,4,5,2,2,1,1,2} matrices. The results of

solving this model are shown in figures 6 and 7.
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Comparing the two figures 4 and 6, it can be clearly seen that the convergence velocity
deviation of the inventories ALy, 4., Alga,, ALy a, Alg,4 in the model without delay is greater than
the delay mode, but the values of variables Al,y,;,, ALy, ., Al 4 in both delayed and non-delayed
modes are almost equal, because at the beginning of each step there is no delay for inventories
related to raw materials.

Because there should be no additional fork and mesh raw materials in the skeleton production
stage, the diagram related to the deviation from the desired level of the two variables of mesh
and fork (AL, Aly,.) is equal in the case of no delay. However, if the system is delayed, the
convergence deviation rate from the desired level corresponding to the fork is more significant
than that of the mesh. The consumption coefficient of the fork is greater than that of the mesh.
By comparing the skeletal inventory, it can be seen that the deviation from the desired level is
first increased and then converges to zero in the case of a delay system. However, the behavior
of the diagram for the raw material of the foam is the same in both models.

Comparing the two figures 5 and 7, which are related to the deviation from the target level
of control variables, the convergence rate is higher in the model without delay than the delay

model.

Table 4. Comparison of objective function

Problem Delay Non-delay
The value of the objective J* 351890 216878
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5. Sensitivity analysis for Q, K and R

In this section, sensitivity analysis is performed in order to show the effect of changes in
diagonal matrices @, K and R and on the values of the objective function in both proposed
models. The calculations and results that will be given in the continuation of this section are

based on the information in tables 2 and 3.

5.1. Changes in matrix Q entries

As it is clear, by increasing the values g; fori = 1,2,,...,7 its effect on the values of the
objective function in the two proposed models have been investigated. The following 4 figures
show the convergence status of the state and control variables for values q; = 3 and q; = 11

fori=1,2,,..,7.
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Figure 8. Comparing the convergence speed of state and control variables to their target for different values of
q; (Non Delay )

In general, it can be seen that as the matrix Q values increase, the state variables converge
faster. As the matrix Q values increase, the penalty for deviating from the target values of the
state variables increases. Because the objective function is a minimization type, Af(t) =
f(t) — f (t) converges faster to zero for the state variables, or by increasing the matrix Q
values, the value of the objective function increases; However, it causes the convergence
velocity of state variables to increase (in this example, zero), and convergence occurs faster. In

all figures, the variables are grouped for two different values of the matrix.
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Figure 9. Comparing the convergence speed of state and control variables to their target for different values of
q; (Delay )

As shown in figures 8 and 9, as the values of the matrix increase, the convergence velocity
of the control variables is supposed to be slower since the matrix Q is connected to the

coefficients of the state variables.

5.2. Changes in matrix K entries

As itis clear, by increasing the values k; fori = 1,2, ...,7, its effect on the values of the objective
function in the two proposed models have been investigated. The following 4 figures show the
convergence status of the state and control variables for values k; = 100 and k; = 140 for i =
1,2,..,7.

According to the following 4 figures and the table above, the matrix K minimizes the final
values of the state variables. Because the state variables' final values are very close to zero, the

values of the table have changed slightly.
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Figure 10. Comparing the convergence speed of state and control variables to their target for different values of
k;(Non-Delay)

Miri et al., JSTINP 2025; Vol. 4. No. 3 DOI: 10.22067/JSTINP.2025.94678.1164


https://doi.org/10.22067/jstinp.2025.94678.1164

JOURNAL OF SYSTEMS THINKING IN PRACTICE RESEARCH ARTICLE

100

500 T T T

BO -

G0 -

407

Control variables

State variables

20

-300
0 1 2 3 4

Time Horizon

=20

2 3 4 5 6
Time Horizon
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5.3. Changes in matrix R entries

k; (Delay )

As it is clear, by increasing the values r;for j = 1,2, ...,9, its effect on the values of the objective

function in the two proposed models have been investigated. The following 4 figures show the

convergence status of the state and control variables for values ; =2 and 7, =6 forj =

1,2,..,9.

Increasing the matrix values as expected increases the objective function value. According to

the following statistics, because the matrix is connected to the control variables' coefficients,

the control variables converge more rapidly. As shown in Figure 13, since the coefficients of

the state variables in the objective function have not changed, the convergence velocity of the

state variables has slowed down.
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Figure 12. Comparing the convergence speed of state and control variables to their target for different values of

1; (Non-Delay)
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Therefore, it is possible to summarize the sensitivity analysis of changes in the values of the

coefficients of state and control variables in the objective function as follows:

Table 5. Comparison of sensitivity analysis

Increase in the

. State Variables Control Variables
matrix values
0 Convergence is faster because @ is the Convergence is slower because Q is
coefficient of state variables the coefficient of state variables
R Convergence is slower because R is the Convergence is faster because R is the
coefficient of control variables coefficient of control variables
K Not very effective Not very effective

As mentioned, the matrix Q form the coefficients of the state variables. As the values of the
matrix Q entries increase, the state variables will converge faster. Since the matrix R form, the
coefficients of the control variables, the control variables' values will converge more rapidly as
the values of the matrix R increase. The matrix K is the final coefficients of state variables, and
since the final values of state variables are close to zero, they will not have much effect on the
values of the objective function.

Therefore, by increasing (in a specific range) the penalty coefficients, the convergence is
accelerated. Results indicate that increasing the penalty coefficient in the objective function,

accelerates the convergence of the state and control variables.

6. Discussion

As mentioned above, by studying previous research, it is observed that several optimal control
models have been proposed to control production and inventory by MRP systems, which often
did not take into account the lead time or include the return and reworking stages. In this study,

a production-inventory optimal control model is proposed that eliminates this shortcoming.
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Model implications are presented in two sections: theoretical implications, which mainly
compare the proposed model with previous models, and practical implications, which include

cases related to the interpretation of the results of the proposed model.

6.1. Theoretical implications

Based on Pooya and Pakdaman's (2019) proposed approach, an optimal continuous MRP
control model can be modified to use computational aspects of CMRP. For example, state
variables for inventory stores, control variables for the production, ordering, and demand
programs, BOM system, and demand dependence on BOM can all indicate CMRP
computational requirements. The current proposed model is a continuous MRP model that
considers the delay due to production lead time (Pooya and Pakdaman, 2019) and a multi-stage
production-inventory system (Pooya and Pakdaman, 2019). Since time is considered a
continuous parameter, the lead time is considered in each production stage. Hence, the model
is more realistic and feasible for all industries. It is also a proposed model for determining
production values at any given time in discrete production processes, such as a workshop,
handling the flow, and applying assembly lines.

One of the significant differences between CMRP and DMRP is LT. In the CMRP system,
the LT value can be any decimal number, while in the DMRP system provided by Ignaciuk and
Bartoszewicz (2010). The LT must be an integer; in this model, if the LT is a non-integer, it
should be rounded to the next larger integer. However, the number of orders will be received
with a delay. If the LT is rounded to the first smaller number, orders will be received sooner,
which will create a surplus inventory and thus increase maintenance costs, and MRP objectives
will not be met.

According to the model proposed by Foul and Tadj (2007), returned items will only be
returned to the market for reworking. In this article's model, the produced items will be
examined before distribution in the market to check the quality of the distributed items. The
defective items percentage in the market also be reduced. For this purpose, the returned items
should be identified in this stage. Additionally, the return stage for defective items is considered
after distribution. Also, in the proposed research model, in addition to reconstruction, the
recycling of items is considered. However, in Mishra's (2016) models, returned items will only
be reworked, and the rest will be disposed of. In this case, the corruption amount in the items

will be high, and their model's flexibility will be less than in real conditions.
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The recycling stage of the returned items is a benefit of this model. Since recycled items can
be used in the production process, manufacturers understand that product recycling can lead to
increased profits. Returned items, in addition to manufactured goods, could also be work in
process goods. Returned items can be work in process and manufactured items, some of which
cannot be recycled and will be disposed of as spoiled items. Returned items may be reworked
or recycled. It is assumed that the reproduction and recycling processes are complete, and all
inputs have been converted into the desired output. Otherwise, if there is waste in the recycling
and reproduction processes, the model will automatically adapt to new coefficients by adjusting
its structure.

Compared to previous models, one significant benefit of this model is that the sum of each
initial item is sufficient only for production in the next stage. It is a multiplier of the number
and the amount of inventory used in the BOM. It prevents the development of surplus
inventories.

Since the proposed optimal control model is linear-quadratic, an accurate answer could be
obtained. However, approximate approaches can be used for large-scale problems. The state
variables' positive values represent surplus inventory, which exceeds the warehouse capacity,
and the negative values represent the warehouse capacity that has not been utilized fully. As
shown in the figures, the inventories are close to the target values after short times when the

order programs are set.

6.2. Practical implications

A three-level BOM model is presented in this study, which also offers the flexibility to produce
products with higher BOM levels.

The finite capacity of activities at workstations leads to limitations such as production,
reconstruction, and recycling goals. The inventory objective is to minimize the difference
between the stock level and its precautionary reserve level. The purpose of disposing of items
indicates the desired level of disposal of perishable items, and the capacity to order, release,
and transport raw parts are among other goals. Also, in MPS, the target demand for the final
product is usually defined as planned demand. Therefore, minimizing the difference between
demand and demand target at any given time creates consistency in the production process with
the planned demand.

Positive market values are due to the unnecessary release of goods relative to MPS'
anticipated market. Similarly, negative values for demand indicate that product release is lower

than the planned demand for MPS. However, as shown in the figures, the other variables are set
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so that the AR, ) converged to zero. It means that demand converges to predetermined target

values.

As shown in Figure 4, the changes in the 3D panel inventory have initially increased. Because
the difference between the input variables of the sent skeleton levels and foam sent to this
inventory has increased from the amount of 3D panel goods seen in figure 5, and then converges
to zero. Because the amount of sending 3D panel items deviation from the desired level to the
previous level has converged to zero, the difference between the amount of deviation of skeletal
and foam items from the desired level of deviation of the final product from the desired level
has increased. After the convergence of all three variables to zero, this difference is reduced
and converges to zero. Therefore, the final product's increase is due to the over-shipment of two
skeletal and foam items. Thus, to converge faster, the company should act as shown in Figure
4, without delay. In the state of delay, as shown in Figure 6, it sends two skeletal and foam
goods.

According to Figure 4, the foam inventory rapidly converges to the desired amount. If Figure
2 is taken into account, the foam raw material's deviation level is removed from this inventory.
The level of the deviation of the raw material shipment is included. Figure 5 shows that the
convergence velocity of sent items is greater than the order variable's convergence velocity.
This means that the input rate has decreased relative to the output, resulting in an increase in
the variable convergence velocity of the foam inventory mode.

As the input and output variables to the skeleton's inventory deviate from its desired value,
all of them are state variables that have been inputted and outputted at a constant rate, so no
significant change in the values of this variable has occurred. It is uniformly converged to its
target value, which is zero.

The amount of the state variable of the skeletal stock level has increased from the desired
predetermined value overtime period [0, 0.6], if Figure 6 is taken into account. Because in this
period, the convergence velocity of the control variables and the input state were higher than
the convergence velocity of the output variables. However, after this period, the convergence
velocity in the output variables has increased, resulting in a decrease in the deviation of the
skeletal stock level from its desired value.

Analyzing the variable behavior of the final inventory mode of the product in Figure 6 shows
that the inventory amount of this product first decreased and then converged to zero. According
to Equation (20) and the coefficients of 3D panel product inventory variable in the matrix B in

"production -inventory Optimal control model of 3D panels considering production lead time"

JN0RY Miri et al., JSTINP 2025; Vol. 4. No. 3 DOI: 10.22067/JSTINP.2025.94678.1164


https://doi.org/10.22067/jstinp.2025.94678.1164

Designing an Optimal Control Model of Finite Capacity, Multi-stage Continuous MRP System JSTINP

section, it can be seen the control variables of the fork, mesh, and skeleton order level are the
input variables and the order level of the foam. The amount of sent 3D panel is the output ones.
Due to the behavior of the above variables in figure 7, the negative value of the order levels of
the two raw materials of mesh and fork and their coefficients in the matrix B', the final product
and the order level of the raw material of the foam are converged with delay to their target,
which reduces the inventory variable value of the final product in the delayed state. The lack of
3D panel inventory in the mentioned range is due to the high level of ordering of the two raw

materials of mesh, fork, and skeleton.

7. Conclusions and future suggestions

A quadratic linear optimal control model is modeled in this paper for a multi-stage production-
inventory MRP system, which considers the lead time of production. A delayed dynamic system
was deemed for this reason. In the proposed model, the value of the objective function indicates
the convergence rate of the variables (state and control functions) to their respective values. The
inventories are state variables, while the order variables, the number of shipment goods, and
the amount of demand for work in process are control variables. Production lead time refers to
the time required to set up and process machines, as well as the time required to transport items
between different parts of the system. One of the innovations in the proposed optimal control
model compared to previous models is that it provides functions, allowing the amount of items
sent to the next stage to be as much as needed for production, thereby preventing surplus
inventory.

In the delay model, the optimal delay control problem was approximated to a non-delay
problem using the Taylor expansion. Finally, the exact answer to the problem without delay
and the approximate answer to the delay problem were calculated and compared. A comparison
of these responses revealed that the convergence of the non-delayed response to its target value
is faster than that of the delayed one. Although the short lead time is assumed, the value of the
delayed state's objective function is greater than the value of the non-delay problem. When the
unit of time is large, the production lead time (less than one) can be reasonable. In the numerical
simulation section, the time horizon T = 6 is considered, the lead time 7, = 0.1 means 2.4
hours. One of the advantages of the proposed model is that, unlike the existing methods, the
production lead time can be continuous and a fraction of a unit of time.

Compared to the previous models, one of the significant advantages of this model is that the

sum of each initial item until the next step is sufficient only for production. It is the quantity
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factor and quantity of inventory used in the BOM that prevent the development of excess
inventory. In this paper, a general material requirement planning (MRP) system with
deteriorating items for continuous production processes is considered, and an optimal control
model is introduced, taking into account finite capacity constraints. It helps planners consider
and model limited capacities during scheduling processes. In the optimal solution, when the
state and control variables tend to zero, it means that they converge to the target values of the
variables based on the optimal plan. According to Table 1, some existing optimal control
models for inventory-production systems were multistage; however, the authors did not
consider the quantity of ordered items (raw materials) in the final product. Also, they did not
consider any lot-sizing policy. Therefore, our approach for CMRP is new, considers which it
deems the BOM by determining the amount of ordered items in the finished product along with
the continuous production approach in a continuous time framework, as well as the LFL lot-
sizing policy.

The optimal control model, in which the time parameter is continuous, is capable of modeling
the state and control variables so that they converge to their target values. Since this research
focuses on three-level BOM products, it is recommended that further research be conducted for
higher-level BOM products. Additionally, this research considers the Lot for Lot ordering
method. In future research, other types of ordering systems could be considered. As a future
study, restrictions on control and inventory variables could be considered. In this case, different
optimization conditions must be obtained. Uncertainty methods could be used for the proposed
model parameters, such as random planning. A closed-loop answer for the proposed system
could also be obtained and analyzed. In this study, the values of control variables (order, send,
and demand) and state variables (inventories) are calculated as time functions, so the answer is
open-loop. That order, shipment, and demand could be calculated as inventory functions
(closed-loop). The proposed algorithm could be developed to incorporate other variables of
state and control if conditions change. However, when the number of production lead times
increases or the number of stages increases, the approximation error also increases. It is because
the first period of approximation was used in the development of the Taylor expansion. Other
existing mathematical methods could be used to solve the system of delayed differential
equations in both cases. Instead of linear relationships, nonlinear relationships between

parameters could be used. In this case, the calculated error could also be increased.
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